6 research outputs found

    Local structure and polar order in liquid N-Methyl-2-pyrrolidone (NMP)

    Get PDF
    N-Methyl-2-pyrrolidone (NMP) is an exceptional solvent, widely used in industry and for nanomaterials processing. Yet despite its ubiquity, its liquid structure, which ultimately dictates its solvation properties, is not fully known. Here, neutron scattering is used to determine NMP’s structure in unprecedented detail. Two dominant nearest-neighbor arrangements are found, where rings are parallel or perpendicular. However, compared with related solvents, NMP has a relatively large population of parallel approaches, similar only to benzene, despite its nonaromaticity and the presence of the normally structure-reducing methyl group. This arrangement is underpinned by NMP’s dipole moment, which has a profound effect on its structure: nearest-neighbor molecules arrange in an antiparallel but offset fashion. This polar-induced order extends beyond the first solvation shell, resulting in ordered trimers that reach the nanometer range. The degree of order and balance of interactions rationalize NMP’s high boiling point and versatile capabilities to solvate both charged and uncharged species

    New Approaches in the Differentiation of Human Embryonic Stem Cells and Induced Pluripotent Stem Cells toward Hepatocytes

    Get PDF
    Orthotropic liver transplantation is the only established treatment for end-stage liver diseases. Utilization of hepatocyte transplantation and bio-artificial liver devices as alternative therapeutic approaches requires an unlimited source of hepatocytes. Stem cells, especially embryonic stem cells, possessing the ability to produce functional hepatocytes for clinical applications and drug development, may provide the answer to this problem. New discoveries in the mechanisms of liver development and the emergence of induced pluripotent stem cells in 2006 have provided novel insights into hepatocyte differentiation and the use of stem cells for therapeutic applications. This review is aimed towards providing scientists and physicians with the latest advancements in this rapidly progressing field

    Current progress in hepatic tissue regeneration by tissue engineering

    No full text
    corecore