2,958 research outputs found
Coherent photodissociation reactions: Observation by a novel picosecond polarization technique
In this communication, we wish to report on a novel picosecond polarization method for measuring the degree of rotational coherence that is preserved in photodissociation reactions. The systems studied here are jet-cooled van der Waals molecules; stilbene [4-6] bound [5] to He or Ne with a 1:1 composition.[7
Caging phenomena in reactions: Femtosecond observation of coherent, collisional confinement
We report striking observations of coherent caging of iodine, above the B state dissociation threshold, by single collisions with rare gas atoms at room-temperature. Despite the random nature of the solute–solvent interaction, the caged population retains coherence of the initially prepared unbound wave packet. We discuss some new concepts regarding dynamical coherent caging and the one-atom cage effect
Recommended from our members
Reproductive tract biology: Of mice and men.
The study of male and female reproductive tract development requires expertise in two separate disciplines, developmental biology and endocrinology. For ease of experimentation and economy, the mouse has been used extensively as a model for human development and pathogenesis, and for the most part similarities in developmental processes and hormone action provide ample justification for the relevance of mouse models for human reproductive tract development. Indeed, there are many examples describing the phenotype of human genetic disorders that have a reasonably comparable phenotype in mice, attesting to the congruence between mouse and human development. However, anatomic, developmental and endocrinologic differences exist between mice and humans that (1) must be appreciated and (2) considered with caution when extrapolating information between all animal models and humans. It is critical that the investigator be aware of both the similarities and differences in organogenesis and hormone action within male and female reproductive tracts so as to focus on those features of mouse models with clear relevance to human development/pathology. This review, written by a team with extensive expertise in the anatomy, developmental biology and endocrinology of both mouse and human urogenital tracts, focusses upon the significant human/mouse differences, and when appropriate voices a cautionary note regarding extrapolation of mouse models for understanding development of human male and female reproductive tracts
Anomalous Negative Magnetoresistance Caused by Non-Markovian Effects
A theory of recently discovered anomalous low-field magnetoresistance is
developed for the system of two-dimensional electrons scattered by hard disks
of radius randomly distributed with concentration For small magnetic
fields the magentoresistance is found to be parabolic and inversely
proportional to the gas parameter, With increasing field the magnetoresistance becomes linear
in a good agreement with the
experiment and numerical simulations.Comment: 4 pages RevTeX, 5 figure
Two regimes for effects of surface disorder on the zero-bias conductance peak of tunnel junctions involving d-wave superconductors
Impurity-induced quasiparticle bound states on a pair-breaking surface of a
d-wave superconductor are theoretically described, taking into account
hybridization of impurity- and surface-induced Andreev states. Further a theory
for effects of surface disorder (of thin impurity surface layer) on the
low-bias conductance of tunnel junctions is developed. We find a threshold
for surface impurity concentration , which separates the two regimes
for surface impurity effects on the zero-bias conductance peak (ZBCP). Below
the threshold, surface impurities do not broaden the ZBCP, but effectively
reduce its weight and generate impurity bands. For low impurity bands can
be, in principle, resolved experimentally, being centered at energies of bound
states induced by an isolated impurity on the surface. For larger
impurity bands are distorted, move to lower energies and, beginning with the
threshold concentration , become centered at zero energy. With
increasing above the threshold, the ZBCP is quickly destroyed in the case
of strong scatterers, while it is gradually suppressed and broaden in the
presence of weak impurity potentials. More realistic cases, taking into account
additional broadening, not related to the surface disorder, are also
considered.Comment: 9 pages, 7 figure
4D visualization of embryonic, structural crystallization by single-pulse microscopy
In many physical and biological systems the transition from an amorphous to ordered native structure involves complex energy landscapes, and understanding such transformations requires not only their thermodynamics but also the structural dynamics during the process. Here, we extend our 4D visualization method with electron imaging to include the study of irreversible processes with a single pulse in the same ultrafast electron microscope (UEM) as used before in the single-electron mode for the study of reversible processes. With this augmentation, we report on the transformation of amorphous to crystalline structure with silicon as an example. A single heating pulse was used to initiate crystallization from the amorphous phase while a single packet of electrons imaged selectively in space the transformation as the structure continuously changes with time. From the evolution of crystallinity in real time and the changes in morphology, for nanosecond and femtosecond pulse heating, we describe two types of processes, one that occurs at early time and involves a nondiffusive motion and another that takes place on a longer time scale. Similar mechanisms of two distinct time scales may perhaps be important in biomolecular folding
Quasiclassical negative magnetoresistance of a 2D electron gas: interplay of strong scatterers and smooth disorder
We study the quasiclassical magnetotransport of non-interacting fermions in
two dimensions moving in a random array of strong scatterers (antidots,
impurities or defects) on the background of a smooth random potential. We
demonstrate that the combination of the two types of disorder induces a novel
mechanism leading to a strong negative magnetoresistance, followed by the
saturation of the magnetoresistivity at a value determined
solely by the smooth disorder. Experimental relevance to the transport in
semiconductor heterostructures is discussed.Comment: 4 pages, 2 figure
Time-Translation Invariance of Scattering Maps and Blue-Shift Instabilities on Kerr Black Hole Spacetimes
In this paper, we provide an elementary, unified treatment of two distinct
blue-shift instabilities for the scalar wave equation on a fixed Kerr black
hole background: the celebrated blue-shift at the Cauchy horizon (familiar from
the strong cosmic censorship conjecture) and the time-reversed red-shift at the
event horizon (relevant in classical scattering theory).
Our first theorem concerns the latter and constructs solutions to the wave
equation on Kerr spacetimes such that the radiation field along the future
event horizon vanishes and the radiation field along future null infinity
decays at an arbitrarily fast polynomial rate, yet, the local energy of the
solution is infinite near any point on the future event horizon. Our second
theorem constructs solutions to the wave equation on rotating Kerr spacetimes
such that the radiation field along the past event horizon (extended into the
black hole) vanishes and the radiation field along past null infinity decays at
an arbitrarily fast polynomial rate, yet, the local energy of the solution is
infinite near any point on the Cauchy horizon.
The results make essential use of the scattering theory developed in [M.
Dafermos, I. Rodnianski and Y. Shlapentokh-Rothman, A scattering theory for the
wave equation on Kerr black hole exteriors, preprint (2014) available at
\url{http://arxiv.org/abs/1412.8379}] and exploit directly the time-translation
invariance of the scattering map and the non-triviality of the transmission
map.Comment: 26 pages, 12 figure
- …