46 research outputs found

    Exome sequencing identified rare variants in genes HSPG2 and ATP2B4 in a family segregating developmental dysplasia of the hip

    Get PDF
    Variant filtration process illustrating the exome filtering scheme in two affected individuals. Panel 1: Genes containing rare variants (1% in 1000G/ExAC/in-house database; absent from dbSNP) and in accordance with an autosomal dominant inheritance with incomplete penetrance (shared between affected samples III:5 and IV:2). ACOT8, ADCK1, AGMO, ANGPT4, ANKS3, ATP2B4, BARHL1, C12orf44, C18orf56, CACTIN, CCM2L, CEACAM4, CRISPLD2, CTAGE7P, CTSA, CTSE, DAGLB, DAZAP2, DCTN4, DENND1B, EDEM1, EMG1, FAM154A, FAM19A2, GSK3A, HIPK1, HMCN2, HNRNPUL1, HSPG2, INCENP, INTS1, IRG1, KCNIP4, KHSRP, LEPREL2, LPPR3, MAN1C1, MICALCL, MREG, MUC5B, NAV1, NEURL2, NPR2, NUCKS1, PCSK5, PDS5A, PLCG2, POMT1, PPL, PRDM7, PRKAB1, SEZ6L, SLC6A12, SLC7A5, SLIT2, ZCCHC8, ZNF335, ZNF648, ZNF780A. (JPG 128 kb

    Sequence analysis of the VSX1 and SOD1 genes in families with Keratoconus and a review of the literature

    Get PDF
    AbstractObjectiveKeratoconus (KC) is a non-inflammatory disorder of the cornea in which the cornea becomes thin and conical, inducing myopia and irregular astigmatism and resulting in mild to marked impairment of vision. The present study was designed to screen two candidate KC genes to identify pathogenic sequence variants responsible for KC in Saudi families.MethodsPeripheral blood samples from members of five Saudi families with KC from the Northern region were collected. Genomic DNA was isolated, and bidirectional sequencing was performed of all coding exons of VSX1 and SOD1 genes using Sanger sequencing.ResultsAll five of the KC families showed a pattern of autosomal recessive inheritance. Phenotyping of these families was performed by a senior ophthalmologist. Sequence analysis of the VSX1 and SOD1 genes failed to reveal any pathogenic sequence variant that could account for KC in the affected individuals.ConclusionOur failure to detect sequence variants in two of the known KC associated genes triggers an interest in other known KC candidate genes, including miR-184, DOCK9, IL1RN and SLC4A11. Future genotyping with dense SNP arrays followed by exome sequencing in these families will be a useful approach to identify the gene(s) underlying KC in this Saudi cohort, which may be different from those reported elsewhere

    A novel insertion mutation in the cartilage-derived morphogenetic protein-1 (CDMP1) gene underlies Grebe-type chondrodysplasia in a consanguineous Pakistani family

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Grebe-type chondrodysplasia (GCD) is a rare autosomal recessive syndrome characterized by severe acromesomelic limb shortness with non-functional knob like fingers resembling toes. Mutations in the cartilage-derived morphogenetic protein 1 (<it>CDMP1</it>) gene cause Grebe-type chondrodysplasia.</p> <p>Methods</p> <p>Genotyping of six members of a Pakistani family with Grebe-type chondrodysplasia, including two affected and four unaffected individuals, was carried out by using polymorphic microsatellite markers, which are closely linked to <it>CDMP1 </it>locus on chromosome 20q11.22. To screen for a mutation in <it>CDMP1 </it>gene, all of its coding exons and splice junction sites were PCR amplified from genomic DNA of affected and unaffected individuals of the family and sequenced directly in an ABI Prism 310 automated DNA sequencer.</p> <p>Results</p> <p>Genotyping results showed linkage of the family to <it>CDMP1 </it>locus. Sequence analysis of the <it>CDMP1 </it>gene identified a novel four bases insertion mutation (1114insGAGT) in exon 2 of the gene causing frameshift and premature termination of the polypeptide.</p> <p>Conclusion</p> <p>We describe a 4 bp novel insertion mutation in <it>CDMP1 </it>gene in a Pakistani family with Grebe-type chondrodysplasia. Our findings extend the body of evidence that supports the importance of <it>CDMP1 </it>in the development of limbs.</p

    Abstracts from the 3rd International Genomic Medicine Conference (3rd IGMC 2015)

    Get PDF

    Homozygous Duplication in the <i>CHRNE</i> in a Family with Congenital Myasthenic Syndrome 4C: 18-Year Follow Up

    No full text
    Background and objectives: Congenital myasthenic syndromes (CMSs) are rare inherited diseases characterized by muscle weakness and fatigability on exertion resulting from defects in the neuromuscular junctions. Mutations in 32 genes have been reported as the underlying causes of CMS, with mutations in the cholinergic receptor nicotinic epsilon subunit (CHRNE) being the most common cause of the disease. Methodology and Materials: This study investigated a large consanguineous family with multiple individuals suffering from abnormal fatigue and muscle weakness in the ocular and limb regions. Moreover, the affected individuals were followed up for 18 years to observe the clinical course of the disease. Results: High-quality exome sequencing followed by bidirectional Sanger sequencing revealed a homozygous duplication variant (NM_000080.4: c.1220-8_1227dup) in the splice acceptor site of exon 11 of the CHRNE gene. This variant is predicted to cause frameshift and premature termination (p.Cys410ProfsTer51). Both parents had heterozygous duplication variants with no clinical symptoms. The personalized treatment of the affected individuals resulted in a marked improvement in the clinical symptoms. More than 80% of the disease symptoms in the affected individuals subsided after the use of pyridostigmine and salbutamol (4 mg). Conclusions: This is the first report of long-term follow up of cases with homozygous insertion (c.1220-8_1227dup) in the CHRNE gene. Furthermore, this report expands the phenotypic symptoms associated with the CHRNE mutation

    Identification of Novel and Recurrent Variants in <i>BTD</i>, <i>GBE1</i>, <i>AGL</i> and <i>ASL</i> Genes in Families with Metabolic Disorders in Saudi Arabia

    No full text
    Background and Objectives: Inherited metabolic disorders (IMDs) are a group of genetic disorders characterized by defects in enzymes or transport proteins involved in metabolic processes. These defects result in an abnormal accumulation of metabolites and thus interfere with the body’s metabolism. A variety of IMDs exist and differential diagnosis is often challenging. Our objective was to gain insight into the genetic basis of IMDs and the correlations between specific genetic mutations and clinical presentations in patients admitted at various hospitals in the Madinah region of the Kingdom of Saudi Arabia. Material and Methods: Whole exome sequencing (WES) has emerged as a powerful tool for diagnosing IMDs and allows for the identification of disease-causing genetic mutations in individuals suspected of IMDs. This ensures accurate diagnosis and appropriate management. WES was performed in four families with multiple individuals showing clinical presentation of IMDs. Validation of the variants identified through WES was conducted using Sanger sequencing. Furthermore, various computational analyses were employed to uncover the disease gene co-expression and metabolic pathways. Results: Exome variant data analysis revealed missense variants in the BTD (c.1270G > C), ASL (c.1300G > T), GBE1 (c.985T > G) and AGL (c.113C > G) genes. Mutations in these genes are known to cause IMDs. Conclusions: Thus, our data showed that exome sequencing, in conjunction with clinical and biochemical characteristics and pathological hallmarks, could deliver an accurate and high-throughput outcome for the diagnosis and sub-typing of IMDs. Overall, our findings emphasize that the integration of WES with clinical and pathological information has the potential to improve the diagnosis and understanding of IMDs and related disorders, ultimately benefiting patients and the medical community

    Mutations in <it>WDR62 </it>gene in Pakistani families with autosomal recessive primary microcephaly

    No full text
    Abstract Background Autosomal recessive primary microcephaly is a disorder of neurogenic mitosis that causes reduction in brain size. It is a rare heterogeneous condition with seven causative genes reported to date. Mutations in WD repeat protein 62 are associated with autosomal recessive primary microcephaly with cortical malformations. This study was initiated to screen WDR62 mutations in four consanguineous Pakistani families with autosomal recessive primary microcephaly. Methods As part of a large study to detect the genetic basis of primary microcephaly in Pakistan, homozygosity mapping and DNA sequencing was used to explore the genetic basis of autosomal recessive primary microcephaly in four families. Results Four out of 100 families recruited in the study revealed linkage to the MCPH2 locus on chromosome 19, which harbor WDR62 gene. DNA sequencing in these MCPH2 linked families result in the identification of a novel nonsense mutation (p.Q648X) and three previously known mutations. Conclusion Our data indicate that WDR62 mutations cause about 4% of autosomal recessive primary microcephaly in Pakistan.</p
    corecore