21 research outputs found

    Single nucleotide polymorphism E23K of KCNJ11 gene and other risk factors associated with type-2 diabetes mellitus in Gaza

    Get PDF
    Type 2 diabetes mellitus (T2DM) is a multifactorial disease in which environmental triggers interact with genetic variants in predisposition to disease. The aim of this study was to evaluate (E23K) SNP in KCNJ11 gene as a possible contributor to T2DM among Gaza City patients. Also to consider relation between E23K SNP and other risk factors for T2DM. Two hundred male and female individuals were examined: 100 T2DM patients and 100 control individuals. The glucose level was determined, and the groups were genotyped for the SNP (E23K) by PCR/RFLP technique using the BanII restriction enzyme. A questionnaire was completed to evaluate the role of physical and environmental risk factors for T2DM. There was a strong statistically significant relation between the E23K polymorphism and T2DM (P= 0.000). Forty three percent of cases were E/K compared to 29% of controls; and 15% of cases were K/K compared to 3% of controls. Obesity, persistent stress, absence of physical activity and low level of education were also significantly related to T2DM (P= 0.000). The mean fasting blood sugar level was significantly higher among the cases than the control, and particularly among homozygous and heterozygous cases (P= 0.000). In conclusion, risk factors that are significantly related with T2DM patients in Gaza city include the E23K polymorphism, obesity, persistent stress, absence of physical activity, and low level of education. The inheritance of the K allele predisposes for T2DM, provided that other genetic or/and physical and environmental risk factors be present

    MicroRNA-targeting in male infertility : Sperm microRNA-19a/b-3p and its spermatogenesis related transcripts content in men with oligoasthenozoospermia

    Get PDF
    Objective: To elucidate and validate the potential regulatory function of miR-19a/b-3p and its spermatogenesis-related transcripts content in sperm samples collected from men with oligoasthenozoospermia. Methods: Men presenting at an infertility clinic were enrolled. MicroRNA (miRNA) and target genes evaluation were carried out using in silico prediction analysis, Reverse transcription-quantitative PCR (RT-qPCR) validation, and Western blot confirmation. Results: The expression levels of miRNA-19a/b-3p were significantly upregulated and 51 target genes were significantly down-regulated in oligoasthenozoospermic men compared with age-matched normozoospermic men as determined by RT-qPCR. Correlation analysis highlighted that sperm count, motility, and morphology were negatively correlated with miRNA-19a/b-3p and positively correlated with the lower expression level of 51 significantly identified target genes. Furthermore, an inverse correlation between higher expression levels of miRNA-19a/b-3p and lower expression levels of 51 target genes was observed. Consistent with the results of the RT-qPCR, reduced expression levels of STK33 and DNAI1 protein levels were identified in an independent cohort of sperm samples collected from men with oligoasthenozoospermia. Conclusion: Findings suggest that the higher expression of miRNA-19a/b3p or the lower expression of target genes are associated with oligoasthenozoospermia and male infertility, probably through influencing basic semen parameters. This study lay the groundwork for future studies focused on investigating therapies for male infertility

    MicroRNA-targeting in spermatogenesis: Over-expressions of microRNA-23a/b-3p and its affected targeting of the genes ODF2 and UBQLN3 in spermatozoa of patients with oligoasthenozoospermia

    Get PDF
    Background Male infertility is a multifactorial syndrome with diverse phenotypic representations. MicroRNAs (miRNAs) are small, non-coding RNAs that are involved in the post-transcriptional regulation of gene expression. Altered abundance levels of ODF2 and UBQLN3 have been reported in patients with different spermatogenic impairments. However, the transcriptional regulation of these two genes by miR-23a/b-3p is still unclear. Objectives To investigate experimentally whether miR-23a/b-3p targets the genes ODF2 and UBQLN3 and whether this targeting impacts abundance levels of ODF2 and UBQLN3 in patients with oligoasthenozoospermia. Materials and methods A total of 92 men attending a fertility clinic were included in the study, including 46 oligoasthenozoospermic men and 46 age-matched normozoospermic volunteers who served as controls. Reverse transcription-quantitative PCR (RT-qPCR), Western blot, and dual-luciferase (Firefly-Renilla) assays were used to validate the miRNAs and their target genes. Results RT-qPCR revealed that miR-23a/b-3p was more abundant and ODF2 and UBQLN3 targets were less abundant in men with impaired spermatogenesis. Besides, Western blot shows that ODF2 and UBQLN3 protein levels were reduced in men with impaired spermatogenesis. In silico prediction and dual-luciferase assays revealed that potential links exist between the higher abundance level of miR-23a/b-3p and the lower abundance level of ODF2 and UBQLN3 targets. Mutations in the miR-23a/b-3p-binding site within the 3ˊUTRs (3ˊuntranslated regions) of ODF2 and UBQLN3 genes resulted in abrogated responsiveness to miR-23a/b-3p. Correlation analysis showed that sperm count, motility, and morphology were negatively correlated with miR-23a/b-3p and positively correlated with the lower abundance level of UBQLN3, while ODF lower abundance level was positively correlated with sperm motility. Conclusion Findings indicate that the higher abundance level of miR-23a/b-3p and the lower abundance level of ODF2 and UBQLN3 targets are associated with oligoasthenozoospermia and male subfertility

    Integrated microRNA and mRNA Expression Profiling Identifies Novel Targets and Networks Associated with Ebstein’s Anomaly

    Get PDF
    Little is known about abundance level changes of circulating microRNAs (miRNAs) and messenger RNAs (mRNA) in patients with Ebstein’s anomaly (EA). Here, we performed an integrated analysis to identify the differentially abundant miRNAs and mRNA targets and to identify the potential therapeutic targets that might be involved in the mechanisms underlying EA. A large panel of human miRNA and mRNA microarrays were conducted to determine the genome-wide expression profiles in the blood of 16 EA patients and 16 age and gender-matched healthy control volunteers (HVs). Differential abundance level of single miRNA and mRNA was validated by RealTime quantitative PCR (RT-qPCR). Enrichment analyses of altered miRNA and mRNA abundance levels were identified using bioinformatics tools. Altered miRNA and mRNA abundance levels were observed between EA patients and HVs. Among the deregulated miRNAs and mRNAs, 76 miRNAs (49 lower abundance and 27 higher abundance, fold-change of ≥2) and 29 mRNAs (25 higher abundance and 4 lower abundance, fold-change of ≥1.5) were identified in EA patients compared to HVs. Bioinformatics analysis identified 37 pairs of putative miRNA-mRNA interactions. The majority of the correlations were detected between the lower abundance level of miRNA and higher abundance level of mRNA, except for let-7b-5p, which showed a higher abundance level and their target gene, SCRN3, showed a lower abundance level. Pathway enrichment analysis of the deregulated mRNAs identified 35 significant pathways that are mostly involved in signal transduction and cellular interaction pathways. Our findings provide new insights into a potential molecular biomarker(s) for the EA that may guide the development of novel targeting therapies

    Characterization of micro-RNA in women with different ovarian reserve

    Get PDF
    Women undergoing infertility treatment are routinely subjected to one or more tests of ovarian reserve. Therefore, an adequate assessment of the ovarian reserve is necessary for the treatment. In this study, we aimed to characterize the potential role of microRNAs (miRNAs) as biomarkers for women with different ovarian reserves. A total of 159 women were recruited in the study and classified according to their anti-Müllerian hormone (AMH) level into three groups: (1) low ovarian reserve (LAMH, n = 39), (2) normal ovarian reserve (NAMH, n = 80), and (3) high ovarian reserve (HAMH, n = 40). SurePrint Human miRNA array screening and reverse transcription-quantitative PCR (RT-qPCR) were respectively employed to screen and validate the miRNA abundance level in the three tested groups. Compared with NAMH, the abundance level of 34 and 98 miRNAs was found to be significantly altered in LAMH and HAMH, respectively. The abundance level of miRNAs was further validated by RT-qPCR in both, the screening samples as well as in an independent set of validation samples. The abundance levels of the validated miRNAs were significantly correlated with the AMH level. The best AUC value for the prediction of the increase and decrease in the AMH level was obtained for the miR-100-5p and miR-21-5p, respectively. The level of miRNAs abundance correlates with the level of AMH, which may serve as a tool for identifying women with a different ovarian reserve and may help to lay the ground for the development of novel diagnostic approaches

    Antibiotic resistance and mecA gene characterization of Staphylococcus epidermidis isolated from some hospitals in Gaza strip

    Get PDF
    Antibiotic resistance of S. epidermidis isolated from biological specimens is a global problem to public health. In this study a total of 256 S. epidermidis isolates (128 clinical isolates and 128 nasal isolates) from Gaza strip, Palestine were investigated. All isolates were tested for its antimicrobial susceptibilities and carriage of the mecA gene. Out of the 256 isolates, 184 (71.9%) were resistant to multiple antibiotics with all displaying increased susceptibility toward rifampicin (100%), doxycycline (98.4%) and vancomycin (98%). Ninety-six isolates (37.5%) were multidrug resistant (MDR) while, 99 isolates (38.7%) were mecA positive. A significant difference was demonstrated between clinical and nasal isolates. Clinical isolates were significantly more resistant for 8/12 tested antibiotics including resistance to cefoxitin (30μg) (p=0.000) and significantly (p=0.000) represents the MDR isolates while nasal isolates were significantly (p=0.000) sensitive for all tested antibiotics. No significant difference between the two groups in carrying mecA. We find that clinical isolates gain an extra-feature that qualify it to cause a disease and methicillin resistance (MR) was not mecA dependent in all MR isolates

    Prevalence and risk factors of hepatitis B and C viruses among haemodialysis patients in Gaza strip, Palestine

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The prevalence of hepatitis B virus (HBV) and hepatitis C virus (HCV) and its associated risk factors among haemodialysis (HD) patients in Gaza strip was investigated using serological and molecular techniques.</p> <p>Results</p> <p>The overall prevalence of HBV among the four HD centers was 8.1%. The main risk factors were HD center (p = 0.05), history of blood transfusion (p < 0.01), and treatment abroad (p = 0.01). The overall prevalence of HCV among the four HD centers was 22%. The main risk factors were HD center (p < 0.01), time duration on HD (p < 0.01), history of blood transfusion (p < 0.01), treatment abroad (p < 0.01), and history of blood transfusion abroad (p < 0.01). Serum aminotransferases levels decreased in HD patients compared with normal population but still there was a direct association between the activity of liver enzymes and both HBV (p < 0.01) and HCV (p < 0.01) infection.</p> <p>Conclusion</p> <p>The much higher prevalence of Hepatitis viruses among HD patients compared to the normal population of Gaza strip indicates a causative relation between HD and hepatitis viruses transmission. Therefore extremely careful observation of preventive infection control measures is essential to limit Hepatitis viruses' transmission in HD centers.</p

    In vitro inhibition of human leukemia THP-1 cells by Origanum syriacum L. and Thymus vulgaris L. extracts

    Get PDF
    Natural products including, traditional medicinal plants have emerged as a tempting alternative to conventional chemotherapeutic protocols of leukemia because of their minimum side effects and less documented drug resistance. Ethanol extracts were prepared from Thymus vulgaris L. and Origanum syriacum L. plants and investigated against the THP-1 leukemia cell line and freshly isolated peripheral blood mononuclear cells (PBMCs). The 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay and the lactate dehydrogenase (LDH) assay were respectively used to determine the cellular viability and cytotoxicity in response to treatment with increasing extract concentrations. Both extracts exhibited a concentration dependent reduction in viability of the THP-1 cells (IC50 = 2.126 mg/mL for O. syriacum, and 0.1569 mg/mL for T. vulgaris). O. syriacum was more potent against the PBMCs (IC50 = 0.4247 mg/mL), while T. vulgaris was moderately selective (IC50 = 0.3345 mg/mL with PBMCs and SI = 2.1). Only in O. syriacum the reduction in cells viability was caused by cytotoxic effect against leukemic cells (LC50 = of 9.646 mg/mL). T. vulgaris and O. syriacum are both antileukemic in vitro. T. vulgaris represents a potential selective cytostatic and safe target for future anticancer agents’ development. O. syriacum on the other hand is cytotoxic against the leukemia cell line THP-1

    Thiopurine methyltransferase genotyping in Palestinian childhood acute lymphoblastic leukemia patients

    Get PDF
    The genetic polymorphism of thiopurine methyltransferase (TPMT) is well characterized in most populations. Four common polymorphic alleles are associated with impaired activity of the enzyme. These are TPMT*2 (238G>C), TPMT*3B (c.460G>A), TPMT*3A (c.460G>A and c.719A>G) and TPMT*3C (c.719A>G). The aim of the present study was to determine the frequency of TPMT polymorphisms and their association with the occurrence of adverse events, during 6-mercaptopurine therapy in pediatric acute lymphoblastic leukemic (ALL) patients in Gaza Strip. A total of 56 DNA samples from all pediatric ALL patients admitted to the pediatric hematology departments of Gaza strip hospitals were analyzed. Genomic DNA from peripheral blood leukocytes was isolated and the TPMT*2, TPMT*3B TPMT*3A and TPMT*3C allelic polymorphism was determined by PCR-RFLP and allele specific PCR technique. No TPMT*2, *3B or *3C alleles were detected. Only one, out of 56 patients, was found heterozygous for the TPMT*3A allele. Thus, the frequency of TPMT*3A allele was calculated to be 0.89%. Fourteen patients of ALL were suffering from myelotoxicity during 6-MP therapy. From our results, no significant association could be established between clinical and laboratory data and/or the presence of the mutation in TPMT gene. TPMT*3A was the only deficiency allele detected in our population with an allelic frequency of 0.89%. Other polymorphic alleles in TPMT gene, or factors other than TPMT polymorphisms may be responsible for the development of myelosuppression in cases that don’t carry the investigated TPMT alleles (*2, *3A, *3B and *3C
    corecore