186 research outputs found

    The geology of the Venera/Vega landing sites

    Get PDF
    We have performed a photogeological analysis of the Venera Vega landing sites using Magellan radar images. These seven sites are the only places on Venus where geochemistry measurements were taken. In this study, the updated coordinates of the landing sites are used and the landing circle has a radius with an admissible error of about 150 km

    Geochemical aspect of impact cratering: Studies in Vernadsky Institute

    Get PDF
    Studies of the geochemical effects of impact cratering at the Vernadsky Institute in collaboration with the Institute of Dynamics of Geospheres, Moscow State University, Leningrad State University, and some other institutions were fulfilled by several approaches. At the initial stage, three approaches were used: (1) experimental studies of high-temperature vaporization of geological materials (basalts, granites, and so on) in vacuum that was considered as a model of behavior of impact melt and vapor; (2) search of impact-induced geochemical effects in the rock from terrestrial impact craters; and (3) studies of samples of lunar regolith. The next stage of the studies included experiments on quasi-equilibrium vaporization of geological material in Knudsen cells. The results of this investigation are discussed

    Largest impact craters on Venus

    Get PDF
    High-resolution radar images from the Magellan spacecraft have allowed us to perform a detailed study on 25 large impact craters on Venus with diameters from 70 to 280 km. The dimension of these large craters is comparable with the characteristic thickness of the venusian lithosphere and the atmospheric scale height. Some physical parameters for the largest impact craters on Venus (LICV), such as depth, ring/diameter ratio, and range of ballistic ejecta deposits, have been obtained from the SAR images and the altimetry dataset produced by MIT. Data related to each of these parameters is discussed

    Structural Maps of the V-17 Beta Regio Quadrangle, Venus

    Get PDF
    These represent slices of the geologic map into 7 time-stratigraphic levels whose descriptions are found in [3-6]. From older to younger they are: 1) Tessera material unit (t), 2) Densely fractured plains material unit (pdf), 3) Fractured and ridged plains material unit (pfr), 4) Tessera transitional terrain structural unit (tt), 5) Fracture belts structural unit (fb), 6) Shield plains (psh) and plains with wrinkle ridges (pwr) material units combined, and 7) Lobate (pl) and smooth (ps) plains material units combined and, approximately contemporaneous with them, the structural unit of rifted terrain (rt). Each slice shows the generalized pattern of structures typical of these units. Figures 1-7 show the seven maps and Figure 8 shows the combined map illustrating what is shown in the seven maps. To visualize the Beta Regio uplift outlines, the major structure of this area, we show the +0.5 km and +2.5 km contour lines, corresponding respectively to the base and the mid-height of the uplift. It is seen in Figures 1-2 and 4 the trends of t, pdf and tt occupy relatively small areas and their structures seen in these small windows appear rather variable and with almost no orientation heritage with time. Figure 3 shows that swarms of ridge belts trend mostly NW and go through the Beta structure with no alignment with it, suggesting that this structure did not yet exist at this time. Figure 5 shows that fracture belts align along the northern base of the Beta uplift suggesting onset of the formation of this structure. Figure 6 shows that wrinkle ridges do not show alignment with the Beta uplift suggesting that this already forming structure was not high enough to exert topographic stress in its vicinity. Figure 7 shows that the Beta uplift has Devana Chasma as an axial rift zone, suggesting a genetic link between the uplift and rifting. Figure 8 shows that structural trends in this area significantly changed with time

    Density of impact craters on tessera, Venus

    Get PDF
    After the plains, tessera is the most abundant terrain on Venus. It occupies about 10 percent of the Venusian surface, forming the continent-like blocks and small islands above the adjacent plains. Tessera is a result of tectonic deformations of some precursor terrain. However, the nature of that precursor, as well as the causes and mechanisms of its formations, are under debate. Any models considering tessera terrain involve estimation of tessera age, either relative or absolute. It is well known that the important information on the age of a planetary surface comes from impact crater statistics. The Magellan global overview of Venus with improved resolution provides an opportunity to gather data on impact craters in amounts large enough for statistically reliable estimations of crater density for different terrains. Our study of impact crater density on tesserae compared to the surrounding terrains has a goal to determine whether it is higher, lower, or the same and to interpret it in terms of the tessera age and processes involved

    Geologic Mapping of the V-36 Thetis Regio Quadrangle: 2008 Progress Report

    Get PDF
    As a result of mapping, eleven material stratigraphic units and three structural units have been identified and mapped. The material units include (from older to younger): tessera terrain material (tt), material of densely fractured plains (pdf), material of fractured and ridged plains (pfr), material of shield plains (psh), material of plains with wrinkle ridges (pwr), material of smooth plains of intermediate brightness (psi), material of radardark smooth plains (psd), material of lineated plains (pli) material of lobate plains (plo), material of craters having no radar-dark haloes (c1), and material of craters having clear dark haloes (c2). The morphologies and probably the nature of the material units in the study area are generally similar to those observed in other regions of Venus [2]. The youngest units are lobate plains (plo) which here typically look less lobate than in other areas of the planet. Close to them in age are smooth plains which are indeed smooth and represented by two varieties mentioned above. Lineated plains (pli) are densely fractured in a geometrically regular way. Plains with wrinkle ridges, being morphologically similar to those observed in other regions, here occupy unusually small areas. Shield (psh) plains here are also not abundant. Locally they show wrinkle ridging. Fractured and ridged plains (pfr), which form in other regions, the so called ridge belts, are observed as isolated areas of clusters of ridged plains surrounded by other units. Densely fractured plains (pdf) are present in relatively small areas in association with coronae and corona-like features. Tessera terrain (tt) is dissected by structures oriented in two or more directions. Structures are so densely packed that the morphology (and thus nature) of the precursor terrain is not known. Structural units include tessera transitional terrain (ttt), fracture belts (fb) and rifted terrain (rt). Tessera transitional terrain was first identified and mapped by [4] as areas of fractured and ridged plains (pfr) and densely fractured plains (pdf) deformed by transverse faults that made it formally resemble tessera terrain (tt). The obvious difference between units tt and ttt is the recognizable morphology of precursor terrain of unit ttt. Fracture belts are probably ancient rift zones [3]. Rifted terrain (rt), as in other regions of Venus, is so saturated with faults that according to the recommendation of [1, 5] it should be mapped as a structural unit

    Lunar Meteorites: What They Tell us About the Spatial and Temporal Distribution of Mare Basalts

    Get PDF
    Here we analyze the chronology and statistical distribution of lunar meteorites with emphasis on the spatial and temporal distribution of lunar mare basalts. The data are mostly from the Lunar Meteorite Compendium (http://www-curator.jsc.nasa.gov/ antmet/ lmc/contents.cfm cited hereafter as Compendium) compiled by Kevin Righter, NASA Johnson Space Center, and from the associated literature. The Compendium was last modified on May 12, 2008

    Preliminary Stratigraphic Basis for Geologic Mapping of Venus

    Get PDF
    The age relations between geologic formations have been studied at 36 1000x1000 km areas centered at the dark paraboloid craters. The geologic setting in all these sites could be characterized using only 16 types of features and terrains (units). These units form a basic stratigraphic sequence (from older to younger: (1) Tessera (Tt); (2-3) Densely fractured terrains associated with coronae (COdf) and in the form of remnants among plains (Pdf); (4) Fractured and ridged plains (Pfr); (5) Plains with wrinkle ridges (Pwr); (6-7) Smooth and lobate plains (Ps/Pl); and (8) Rift-associated fractures (Fra). The stratigraphic position of the other units is determined by their relation with the units of the basic sequence: (9) Ridge bells (RB), contemporary with Pfr; (10-11) Ridges of coronae and arachnoids annuli (COar/Aar), contemporary with wrinkle ridges of Pwr; (12) Fractures of coronae annuli (COaf) disrupt Pwr and Ps/Pl; (13) Fractures (F) disrupt Pwr or younger units; (14) Craters with associated dark paraboloids (Cdp), which are on top of all volcanic and tectonic units except the youngest episodes of rift-associated fracturing and volcanism; (15-16) Surficial streaks (Ss) and surficial patches (Sp) are approximately contemporary with Cdp. These units may be used as a tentative basis for the geologic mapping of Venus including VMAP. This mapping should test the stratigraphy and answer the question of whether this stratigraphic sequence corresponds to geologic events which were generally synchronous all around the planet or whether the sequence is simply a typical sequence of events which occurred in different places at diffferent times

    Low-emissivity impact craters on Venus

    Get PDF
    An analysis of 144 impact craters on Venus has shown that 11 of these have floors with average emissivities lower than 0.8. The remaining craters have emissivities between 0.8 and 0.9, independent of the specific backscatter cross section of the crater floors. These 144 impact craters were chosen from a possible 164 craters with diameters greater than 30 km as identified by researchers for 89 percent of the surface of Venus. We have only looked at craters below 6053.5 km altitude because a mineralogical change causes high reflectivity/low emissivity above the altitude. We have also excluded all craters with diameters smaller than 30 km because the emissivity footprint at periapsis is 16 x 24 km and becomes larger at the poles

    Survival Times of Meter-Sized Rock Boulders on the Surface of Airless Bodies

    Get PDF
    This study considers the survival times of meter-sized rock boulders on the surfaces of several airless bodies. As the starting point, we employ estimates of the survival times of such boulders on the surface of the Moon by[1], then discuss the role of destruction due to day-night temperature cycling, consider the meteorite bombardment environment on the considered bodies in terms of projectile flux and velocities and finally estimate the survival times. Survival times of meter-sized rocks on lunar surface: The survival times of hand specimen-sized rocks exposed to the lunar surface environment were estimated based on experiments modeling the destruction of rocks by meteorite impacts, combined with measurements of the lunar surface meteorite flux, (e.g.,[2]). For estimations of the survival times of meter-sized lunar boulders, [1] suggested a different approach based on analysis of the spatial density of boulders on the rims of small lunar craters of known absolute age. It was found that for a few million years, only a small fraction of the boulders ejected by cratering process are destroyed, for several tens of million years approx.50% are destroyed, and for 200-300 Ma, ~90 to 99% are destroyed. Following [2] and other works, [1] considered that the rocks are mostly destroyed by meteorite impacts. Destruction of rocks by thermal-stress. However, high diurnal temperature variations on the surface of the Moon and other airless bodies imply that thermal stresses may also be a cause of surface rock destruction. Delbo et al. [3] interpreted the observed presence of fine debris on the surface of small asteroids as due to thermal surface cycling. They stated that because of the very low gravity on the surface of these bodies, ejecta from meteorite impacts should leave the body, so formation there of fine debris has to be due to thermal cycling. Based on experiments on heating-cooling of cm-scale pieces of ordinary and carbonaceous chondrites and theoretical modeling of expansion of the cracks formed they concluded that thermal fragmentation breaks up rocks larger than a few centimeters more quickly than do micrometeoroid impacts. According to them at 1 AU distance from the Sun the lifetime of 10 cm rock fragments on asteroids with a period of rotation from 2.2 to 6 hours should be only ~103 to 104 years and the larger the rock the faster it gets destroyed. But although [3] are obviously correct stating that impact ejecta should leave small asteroids, the low-velocity part of escaping ejecta will mostly stay in orbits close this given asteroid and part of them will eventually return to it. Moreover, directly beneath the impact point the target rock should be fractured and crushed but may not leave the body (Figure 1). These two points question the conclusions of [3]
    • …
    corecore