91 research outputs found

    NO-Donating NSAIDs, PPARδ, and Cancer: Does PPARδ Contribute to Colon Carcinogenesis?

    Get PDF
    The chemopreventive NO-donating NSAIDs (NO-NSAIDs; NSAIDs with an NO-releasing moiety) modulate PPARδ and offer the opportunity to revisit the controversial role of PPARδ in carcinogenesis (several papers report that PPARδ either promotes or inhibits cancer). This review summarizes the pharmacology of NO-NSAIDs, PPARδ cancer biology, and the relationship between the two. In particular, a study of the chemopreventive effect of two isomers of NO-aspirin on intestinal neoplasia in Min mice showed that, compared to wild-type controls, PPARδ is overexpressed in the intestinal mucosa of Min mice; PPARδ responds to m- and p-NO-ASA proportionally to their antitumor effect (p- > m-). This effect is accompanied by the induction of epithelial cell death, which correlates with the antineoplastic effect of NO-aspirin; and NO-aspirin's effect on PPARδ is specific (no changes in PPARα or PPARγ). Although these data support the notion that PPARδ promotes intestinal carcinogenesis and its inhibition could be therapeutically useful, more work is needed before a firm conclusion is reached

    Phospho-aspirin (MDC-22) inhibits breast cancer in preclinical animal models: an effect mediated by EGFR inhibition, p53 acetylation and oxidative stress

    Get PDF
    BACKGROUND: The anticancer properties of aspirin are restricted by its gastrointestinal toxicity and its limited efficacy. Therefore, we synthesized phospho-aspirin (PA-2; MDC-22), a novel derivative of aspirin, and evaluated its chemotherapeutic and chemopreventive efficacy in preclinical models of triple negative breast cancer (TNBC). METHODS: Efficacy of PA-2 was evaluated in human breast cancer cells in vitro, and in orthotopic and subcutaneous TNBC xenografts in nude mice. Mechanistic studies were also carried out to elucidate the mechanism of action of PA-2. RESULTS: PA-2 inhibited the growth of TNBC cells in vitro more potently than aspirin. Treatment of established subcutaneous TNBC xenografts (MDA-MB-231 and BT-20) with PA-2 induced a strong growth inhibitory effect, resulting in tumor stasis (79% and 90% inhibition, respectively). PA-2, but not aspirin, significantly prevented the development of orthotopic MDA-MB-231 xenografts (62% inhibition). Mechanistically, PA-2: 1) inhibited the activation of epidermal growth factor receptor (EGFR) and suppressed its downstream signaling cascades, including PI3K/AKT/mTOR and STAT3; 2) induced acetylation of p53 at multiple lysine residues and enhanced its DNA binding activity, leading to cell cycle arrest; and 3) induced oxidative stress by suppressing the thioredoxin system, consequently inhibiting the activation of the redox sensitive transcription factor NF-κB. These molecular alterations were observed in vitro and in vivo, demonstrating their relevance to the anticancer effect of PA-2. CONCLUSIONS: Our findings demonstrate that PA-2 possesses potent chemotherapeutic efficacy against TNBC, and is also effective in its chemoprevention, warranting further evaluation as an anticancer agent

    Structure-activity relationship study of novel anticancer aspirin-based compounds

    No full text

    Cancer Prevention: A New Era beyond Cyclooxygenase-2

    No full text

    Nitric Oxide-Donating Aspirin Inhibits Colon Cancer Cell Growth via Mitogen-Activated Protein Kinase Activation

    No full text
    corecore