22 research outputs found

    Point-contact spectroscopy of the borocarbide superconductor YNi2B2C

    Full text link
    Point-contact (PC) spectroscopy measurements on YNi2B2C single crystals in the normal and superconducting (SC) state (T_c=15.4K) for the main crystallographic directions are reported. The PC study reveals the electron-phonon interaction (EPI) function with a dominant maximum around 12meV and a further weak structure (kink or shallow broad maximum) at higher energy at about 50meV. Other phonon maxima at 20, 24 and 32meV specified in the phonon DOS of YNi2B2C by neutron measurements [PRB, V.55, 9058 (1997)] are not resolved in the PC spectra pointing out to the main role of the low energy phonon modes in EPI. Directional study of the SC gap results in \Delta_[100]=1.5meV for the a- direction and \Delta_[001]=2.4meV along the c-axis which may point to anisotropic and/or multiband behavior. Noteworthy, the critical temperature T_c in all cases corresponds to that of bulk samples. The value 2\Delta_[001]/kT_c=3.6 is close to the BCS one of 3.52, and the temperature dependence \Delta(T) is BCS-like, while for the a-direction \Delta(T) deviates from mean-field BCS behavior above T_c/2. The directional variation in \Delta can be attributed to the multiband nature of the SC state in YNi2B2C predicted 10 years ago (PRL, V.80, 1730 (1998)).Comment: 3 figs, 2 pages, presented on M2S-HTSC Conference, July 9-14, 2006, Dresde

    The superconducting gaps in FeSe studied by soft point-contact Andreev reflection spectroscopy

    Full text link
    FeSe single crystals have been studied by soft point-contact Andreev-reflection spectroscopy. Superconducting gap features in the differential resistance dV/dI(V) of point contacts such as a characteristic Andreev-reflection double-minimum structure have been measured versus temperature and magnetic field. Analyzing dV/dI within the extended two-gap Blonder-Tinkham-Klapwijk model allows to extract both the temperature and magnetic field dependence of the superconducting gaps. The temperature dependence of both gaps is close to the standard BCS behavior. Remarkably, the magnitude of the double-minimum structure gradually vanishes in magnetic field, while the minima position only slightly shifts with field indicating a weak decrease of the superconducting gaps. Analyzing the dV/dI(V) spectra for 25 point contacts results in the averaged gap values = 1.8+/-0.4meV and =1.0+/-0.2 meV and reduced values 2/kTc=4.2+/-0.9 and 2/kTc=2.3+/-0.5 for the large (L) and small (S) gap, respectively. Additionally, the small gap contribution was found to be within tens of percent decreasing with both temperature and magnetic field. No signatures in the dV/dI spectra were observed testifying a gapless superconductivity or presence of even smaller gaps.Comment: 8 pages, 4 figs., 3 tables. Shortened version without fig.4 and Table 3 is accepted for publication in Phys. Rev.

    Electron-Phonon Interaction in Ternary Rare-Earth Copper Antimonides LaCuSb2 and La(Cu0.8Ag0.2)Sb2 probed by Yanson Point-Contact Spectroscopy

    Full text link
    Investigation of the electron-phonon interaction (EPI) in LaCuSb2 and La(Cu0.8Ag0.2)Sb2 compounds by Yanson point-contact spectroscopy (PCS) has been carried out. Point-contact spectra display a pronounced broad maximum in the range of 10{\div}20 mV caused by EPI. Variation of the position of this maximum is likely connected with anisotropic phonon spectrum in these layered compounds. The absence of phonon features after the main maximum allows the assessment of the Debye energy of about 40 meV. The EPI constant for the LaCuSb2 compound was estimated to be {\lambda}=0.2+/-0.03. A zero-bias minimum in differential resistance for the latter compound is observed for some point contacts, which vanishes at about 6 K, pointing to the formation of superconducting phase under point contact, while superconducting critical temperature of the bulk sample is only 1K.Comment: 4 two-column pages, 5 figures, published in the "Proceedings of the 2017 IEEE 7-th International Conference on Nanomaterials: Applications & Properties", September 10-15, 2017, Zatoka, Ukrain

    Point-contact spectroscopy of the nickel borocarbide superconductor YNi2B2C in the normal and superconducting state

    Full text link
    Point-contact (PC) spectroscopy measurements of YNi2B2C single crystals in the normal and superconducting (SC) state (T_c=15.4K) for the main crystallographic directions are reported. The PC study reveals the electron-phonon interaction (EPI) spectral function with dominant phonon maximum around 12 meV and further weak structures (hump or kink) at higher energy at about 50 meV. No "soft" modes below 12 meV are resolved in the normal state. The PC EPI spectra are qualitatively similar for the different directions. Contrary, directional study of the SC gap results in \Delta_[100]=1.5 meV for the a direction and \Delta_[001]=2.3 meV along the c axis; however the critical temperature T_c in PC in all cases is near to that in the bulk sample. The value 2\Delta_[001]/kT_c=3.6 is close to the BCS value of 3.52, and the temperature dependence \Delta_[001](T) is BCS-like, while the for small gap \Delta_[100](T) is below BCS behavior at T>T_c/2 similarly as in the two-gap superconductor MgB2. It is supposed that the directional variation \Delta can be attributed to a multiband nature of the SC state in YNi2B2C.Comment: 9 pages, 10 figures, to be published in a special issue of J. Low Temp. Phys. in honour of Prof. H. von Loehneyse

    Distribution of the superconducting gap in an YNi2B2C film studied by point contact spectroscopy

    Full text link
    The differential resistances Rd=dV/dI(V)R_d=dV/dI(V) of point contacts between a normal metal and a c axis oriented YNi2B2C film (TcT_c = 15.2K) in the superconducting (SC) state have been investigated. Rd(V)R_d(V) contains clear "gap" features connected with processes of Andreev reflection at the boundary between normal metal and superconductor that allow the determination of the SC gap Δ\Delta and its temperature and magnetic field dependence. A distribution of Δ\Delta from Δmin\Delta_min\approx 1.5 meV to Δmax\Delta_max\approx 2.4 meV is revealed; however the critical temperature TcT_c in all cases corresponded to that of the film. The value 2Δmax/kBTc\Delta_max/k_BT_c\approx3.66 is close to the BCS value of 3.52, and the temperature dependence Δ(T)\Delta(T) is BCS-like, irrespective of the actual Δ\Delta value. It is supposed that the distribution of Δ\Delta can be attributed to a gap anisotropy or to a multiband nature of the SC state in YNi2B2C, rather than to the presence of nodes in the gap.Comment: 6 two-column pages, 7 figs; V2: as published, Fig.4 is modifie

    Point-contact study of the LuNi2B2C borocarbide superconducting film

    Full text link
    We present point-contact (PC) Andreev-reflection measurements of a superconducting epitaxial c-axis oriented nickel borocarbide film LuNi2B2C (Tc=15.9 K). The averaged value of the superconducting gap is found to be 2.6 +/-0.2 meV in the one-gap approach, whereas the two-gap approach results in 2.14+/-0.36 meV and 3.0+/-0.27 meV. The better fit of the Andreev-reflection spectra for the LuNi2B2C - Cu PC obtained by the two-gap approach provides evidence for multiband superconductivity in LuNi2B2C. For the first time, PC electron-phonon interaction (EPI) spectra have been measured for this compound. They demonstrate pronounced phonon maximum at 8.5+/-0.4meV and a second shallow one at 15.8+/-0.6 meV. The electron-phonon coupling constant estimated from the PC EPI spectra turned out to be small (~ 0.1), like in other superconducting rare-earth nickel borocarbides. Possible reasons for this are discussed.Comment: 5 pages, 5 figures, V2: figs. 2 & 5 captions are corrected, and new Refs. 4, 6, 12, 13, 14 are adde

    Spectroscopy of phonons and spin torques in magnetic point contacts

    Full text link
    Phonon spectroscopy is used to investigate the mechanism of current-induced spin torques in nonmagnetic/ferromagnetic (N/F) point contacts. Magnetization excitations observed in the magneto-conductance of the point contacts are pronounced for diffusive and thermal contacts, where the electrons experience significant scattering in the contact region. We find no magnetic excitations in highly ballistic contacts. Our results show that impurity scattering at the N/F interface is the origin of the new single-interface spin torque effect.Comment: 4 pages, 5 figs., accepted for publication in PR
    corecore