233 research outputs found

    Intelligent arbitration of DAOs disputes

    Get PDF
    Smart arbitration in disputes involving Decentralized Autonomous Organizations (DAOs) utilizes blockchain technology and smart contracts to provide efficient solutions for resolving conflicts within the complex digital economy. DAOs, as decentralized entities operating on blockchain protocols, present a new model of governance and contracting that challenges traditional legal frameworks. Given their decentralized and jurisdictionally non-affiliated nature, these organizations encounter difficulties in determining jurisdiction in cases of dispute. However, smart arbitration, relying on automation and transparency provided by smart contracts, can facilitate the swift and effective enforcement of arbitral awards. It offers solutions that transcend the traditional boundaries of the judiciary, allowing arbitration procedures to be executed according to the codes programmed into smart contracts, thereby affording disputing parties access to fair resolutions without the need for traditional litigation. This approach opens new horizons for justice in the digital age and proposes innovative alternatives for addressing contemporary legal challenges

    Test-time augmentation-based active learning and self-training for label-efficient segmentation

    Full text link
    Deep learning techniques depend on large datasets whose annotation is time-consuming. To reduce annotation burden, the self-training (ST) and active-learning (AL) methods have been developed as well as methods that combine them in an iterative fashion. However, it remains unclear when each method is the most useful, and when it is advantageous to combine them. In this paper, we propose a new method that combines ST with AL using Test-Time Augmentations (TTA). First, TTA is performed on an initial teacher network. Then, cases for annotation are selected based on the lowest estimated Dice score. Cases with high estimated scores are used as soft pseudo-labels for ST. The selected annotated cases are trained with existing annotated cases and ST cases with border slices annotations. We demonstrate the method on MRI fetal body and placenta segmentation tasks with different data variability characteristics. Our results indicate that ST is highly effective for both tasks, boosting performance for in-distribution (ID) and out-of-distribution (OOD) data. However, while self-training improved the performance of single-sequence fetal body segmentation when combined with AL, it slightly deteriorated performance of multi-sequence placenta segmentation on ID data. AL was helpful for the high variability placenta data, but did not improve upon random selection for the single-sequence body data. For fetal body segmentation sequence transfer, combining AL with ST following ST iteration yielded a Dice of 0.961 with only 6 original scans and 2 new sequence scans. Results using only 15 high-variability placenta cases were similar to those using 50 cases. Code is available at: https://github.com/Bella31/TTA-quality-estimation-ST-ALComment: Accepted to MICCAI MILLanD workshop 202

    BiometryNet: Landmark-based Fetal Biometry Estimation from Standard Ultrasound Planes

    Get PDF
    Fetal growth assessment from ultrasound is based on a few biometric measurements that are performed manually and assessed relative to the expected gestational age. Reliable biometry estimation depends on the precise detection of landmarks in standard ultrasound planes. Manual annotation can be time-consuming and operator dependent task, and may results in high measurements variability. Existing methods for automatic fetal biometry rely on initial automatic fetal structure segmentation followed by geometric landmark detection. However, segmentation annotations are time-consuming and may be inaccurate, and landmark detection requires developing measurement-specific geometric methods. This paper describes BiometryNet, an end-to-end landmark regression framework for fetal biometry estimation that overcomes these limitations. It includes a novel Dynamic Orientation Determination (DOD) method for enforcing measurement-specific orientation consistency during network training. DOD reduces variabilities in network training, increases landmark localization accuracy, thus yields accurate and robust biometric measurements. To validate our method, we assembled a dataset of 3,398 ultrasound images from 1,829 subjects acquired in three clinical sites with seven different ultrasound devices. Comparison and cross-validation of three different biometric measurements on two independent datasets shows that BiometryNet is robust and yields accurate measurements whose errors are lower than the clinically permissible errors, outperforming other existing automated biometry estimation methods. Code is available at https://github.com/netanellavisdris/fetalbiometry

    Automatic linear measurements of the fetal brain on MRI with deep neural networks

    Full text link
    Timely, accurate and reliable assessment of fetal brain development is essential to reduce short and long-term risks to fetus and mother. Fetal MRI is increasingly used for fetal brain assessment. Three key biometric linear measurements important for fetal brain evaluation are Cerebral Biparietal Diameter (CBD), Bone Biparietal Diameter (BBD), and Trans-Cerebellum Diameter (TCD), obtained manually by expert radiologists on reference slices, which is time consuming and prone to human error. The aim of this study was to develop a fully automatic method computing the CBD, BBD and TCD measurements from fetal brain MRI. The input is fetal brain MRI volumes which may include the fetal body and the mother's abdomen. The outputs are the measurement values and reference slices on which the measurements were computed. The method, which follows the manual measurements principle, consists of five stages: 1) computation of a Region Of Interest that includes the fetal brain with an anisotropic 3D U-Net classifier; 2) reference slice selection with a Convolutional Neural Network; 3) slice-wise fetal brain structures segmentation with a multiclass U-Net classifier; 4) computation of the fetal brain midsagittal line and fetal brain orientation, and; 5) computation of the measurements. Experimental results on 214 volumes for CBD, BBD and TCD measurements yielded a mean L1L_1 difference of 1.55mm, 1.45mm and 1.23mm respectively, and a Bland-Altman 95% confidence interval (CI95CI_{95}) of 3.92mm, 3.98mm and 2.25mm respectively. These results are similar to the manual inter-observer variability. The proposed automatic method for computing biometric linear measurements of the fetal brain from MR imaging achieves human level performance. It has the potential of being a useful method for the assessment of fetal brain biometry in normal and pathological cases, and of improving routine clinical practice.Comment: 15 pages, 8 figures, presented in CARS 2020, submitted to IJCAR

    DaT-SPECT assessment depicts dopamine depletion among asymptomatic G2019S LRRK2 mutation carriers

    Get PDF
    Identification of early changes in Dopamine-Transporter (DaT) SPECT imaging expected in the prodromal phase of Parkinson’s disease (PD), are usually overlooked. Carriers of the G2019S LRRK2 mutation are known to be at high risk for developing PD, compared to non-carriers. In this work we aimed to study early changes in Dopamine uptake in non-manifesting PD carriers (NMC) of the G2019S LRRK2 mutation using quantitative DaT-SPECT analysis and to examine the potential for early prediction of PD. Eighty Ashkenazi-Jewish subjects were included in this study: eighteen patients with PD; thirty-one NMC and thirty-one non-manifesting non-carriers (NMNC). All subjects underwent a through clinical assessment including evaluation of motor, olfactory, affective and non-motor symptoms and DaT-SPECT imaging. A population based DaT-SPECT template was created based on the NMNC cohort, and data driven volumes-of-interest (VOIs) were defined. Comparisons between groups were performed based on VOIs and voxel-wise analysis. The striatum area of all three cohorts was segmented into four VOIs, corresponding to the right/left dorsal and ventral striatum. Significant differences in clinical measures were found between patients with PD and non-manifesting subjects with no differences between NMC and NMNC. Significantly lower uptake (p<0.001) was detected in the right and left dorsal striatum in the PD group (2.2±0.3, 2.3±0.4) compared to the NMC (4.2±0.6, 4.3±0.5) and NMNC (4.5±0.6, 4.6±0.6), and significantly (p = 0.05) lower uptake in the right dorsal striatum in the NMC group compared to NMNC. Converging results were obtained using voxel-wise analysis. Two NMC participants, who later phenoconverted into PD, demonstrated reduced uptake mainly in the dorsal striatum. No significant correlations were found between the DaT-SPECT uptake in the different VOIs and clinical and behavioral assessments in the non-manifesting groups. This study shows the clinical value of quantitative assessment of DaT-SPECT imaging and the potential for predicting PD by detection of dopamine depletion, already at the pre-symptomatic stage

    Brain plasticity following intensive bimanual therapy in children with hemiplegia

    Get PDF
    Neuroplasticity studies examining children with hemiparesis (CH) have focused predominantly on unilateral interventions. CH also have bimanual coordination impairments with bimanual interventions showing benefits. We explored neuroplasticity following hand-arm bimanual intensive therapy (HABIT) of 60 hours in twelve CH (6 females, mean age 11 ± 3.6 y). Serial behavioral evaluations and MR imaging including diffusion tensor (DTI) and functional (fMRI) imaging were performed before, immediately after, and at 6-week follow-up. Manual skills were assessed repeatedly with the Assisting Hand Assessment, Children’s Hand Experience Questionnaire, and Jebsen-Taylor Test of Hand Function. Beta values, indicating the level of activation, and lateralization index (LI), indicating the pattern of brain activation, were computed from fMRI. White matter integrity of major fibers was assessed using DTI. 11/12 children showed improvement after intervention in at least one measure, with 8/12 improving on two or more tests. Changes were retained in 6/8 children at follow-up. Beta activation in the affected hemisphere increased at follow-up, and LI increased both after intervention and at follow-up. Correlations between LI and motor function emerged after intervention. Increased white matter integrity was detected in the corpus callosum and corticospinal tract after intervention in about half of the participants. Results provide first evidence for neuroplasticity changes following bimanual intervention in CH

    Brain Plasticity following Intensive Bimanual Therapy in Children with Hemiparesis: Preliminary Evidence

    Get PDF
    Neuroplasticity studies examining children with hemiparesis (CH) have focused predominantly on unilateral interventions. CH also have bimanual coordination impairments with bimanual interventions showing benefits. We explored neuroplasticity following hand-arm bimanual intensive therapy (HABIT) of 60 hours in twelve CH (6 females, mean age 11 ± 3.6 y). Serial behavioral evaluations and MR imaging including diffusion tensor (DTI) and functional (fMRI) imaging were performed before, immediately after, and at 6-week follow-up. Manual skills were assessed repeatedly with the Assisting Hand Assessment, Children’s Hand Experience Questionnaire, and Jebsen-Taylor Test of Hand Function. Beta values, indicating the level of activation, and lateralization index (LI), indicating the pattern of brain activation, were computed from fMRI. White matter integrity of major fibers was assessed using DTI. 11/12 children showed improvement after intervention in at least one measure, with 8/12 improving on two or more tests. Changes were retained in 6/8 children at follow-up. Beta activation in the affected hemisphere increased at follow-up, and LI increased both after intervention and at follow-up. Correlations between LI and motor function emerged after intervention. Increased white matter integrity was detected in the corpus callosum and corticospinal tract after intervention in about half of the participants. Results provide first evidence for neuroplasticity changes following bimanual intervention in CH.This project was funded by grants from Guy’s and St Thomas’ Charity, Marnie Kimelman Trust and ILAN, the Israeli Association for Disabled children. Beit Issie Shapiro funded and provided the camp venue. D. Green was supported by a grant from the Department of Immigration and Absorption during 2010-2011
    • …
    corecore