9 research outputs found

    Efficient, Recyclable, and Heterogeneous Base Nanocatalyst for Thiazoles with a Chitosan-Capped Calcium Oxide Nanocomposite

    Get PDF
    Calcium oxide (CaO) nanoparticles have recently gained much interest in recent research due to their remarkable catalytic activity in various chemical transformations. In this article, a chitosan calcium oxide nanocomposite was created by the solution casting method under microwave irradiation. The microwave power and heating time were adjusted to 400 watts for 3 min. As it suppresses particle aggregation, the chitosan (CS) biopolymer acted as a metal oxide stabilizer. In this study, we aimed to synthesize, characterize, and investigate the catalytic potency of chitosan–calcium oxide hybrid nanocomposites in several organic transformations. The produced CS–CaO nanocomposite was analyzed by applying different analytical techniques, including Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and field-emission scanning electron microscopy (FESEM). In addition, the calcium content of the nanocomposite film was measured using energy-dispersive X-ray spectroscopy (EDS). Fortunately, the CS–CaO nanocomposite (15 wt%) was demonstrated to be a good heterogeneous base promoter for high-yield thiazole production. Various reaction factors were studied to maximize the conditions of the catalytic technique. High reaction yields, fast reaction times, and mild reaction conditions are all advantages of the used protocol, as is the reusability of the catalyst; it was reused multiple times without a significant loss of potency

    Chitosan Capped Copper Oxide Nanocomposite: Efficient, Recyclable, Heterogeneous Base Catalyst for Synthesis of Nitroolefins

    No full text
    In this article, chitosan copper oxide nanocomposite was synthesized by the solution casting method under microwave irradiation. The nanocomposite solution was microwave irradiated at 300 watt for 3 min under optimal irradiation conditions. By suppressing particle agglomeration, the chitosan matrix was successfully used as a metal oxide stabilizer. The goal of this research was to create, characterize, and test the catalytic potency of these hybrid nanocomposites in a number of well-known organic processes. The prepared CS-CuO nanocomposites were analyzed by different techniques, including Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and field emission scanning electron microscopy (FESEM). Moreover, energy-dispersive X-ray spectroscopy (EDS) was used to measure the copper content in the prepared nanocomposite film. The finger-print peaks in the FTIR spectrum at around 632–502 cm−1 confirmed the existence of the CuO phase. The CS-CuO nanocomposite has been shown to be an efficient base promoter for nitroolefin synthesis via the nitroaldol reaction (Henry reaction) in high yields. The reaction variables were studied to improve the catalytic approach. Higher reaction yields, shorter reaction times, and milder reaction conditions are all advantages of the technique, as is the catalyst’s reusability for several uses

    Innovatively feasible wet incipient method for preparing Cu doped TiO2 nanocomposite: Electro-optical measurement supported by quantitative quantum and classical calculations

    No full text
    The Cu-doped titanium oxide (Cu/TiO2) nanocomposite was systematically prepared using the innovatively feasible incipient wet impregnation method. Notably, the samples were derived from the raw materials through water dilution only. The successful formation of the host anatase TiO2 phase was confirmed by the characteristic peaks observed in the acquired X-ray powder diffraction (XRD) spectrum, which displayed intense peaks attributed to Cu2+ scattering sites, indicating the formation of crystallite Cu/TiO2 nanostructures. Dielectric measurements revealed that Cu/TiO2 possesses a higher dielectric permittivity compared to undoped TiO2. The conductivity for both structures exhibited a decreasing trend with increasing temperature. Interestingly, the measured optical properties indicated that Cu/TiO2 exhibited the minimum energy gap and maximum refractive index. This was further validated by qualitative time-dependent density functional calculation on a stable structural model, which was confirmed through semi-empirical molecular dynamic calculations. Thus, we have demonstrated the capability of our innovatively feasible synthesis method to produce the industrially important Cu-doped TiO2

    Polysaccharides from Spirulina platensis (PSP): promising biostimulants for the green synthesis of silver nanoparticles and their potential application in the treatment of cancer tumors

    No full text
    Abstract Photosynthetic cyanobacterial components are gaining great economic importance as prospective low-cost biostimulants for the green synthesis of metal nanoparticles with valuable medical and industrial applications. The current study comprises the biological synthesis of silver nanoparticles (Ag-NPs) using soluble polysaccharides isolated from Spirulina platensis (PSP) as reducing and capping agents. FTIR spectra showed major functional groups of PSP and biogenic silver nanoparticles including O–H, C–H (CH2), C–H (CH3), C=O, amide, and COO– groups. The UV/Vis spectroscopy scan analyses of the extracted PSP showed absorption spectra in the range of 200–400 nm, whereas the biogenic Ag-NPs showed a maximum spectrum at 285 nm. Transmission electron microscopy (TEM) analysis of the synthesized Ag-NPs showed spherical nanoparticles with mean size between 12 and 15.3 nm. The extracted PSP and Ag-NPs exhibited effective cytotoxic activity against Hep-G2 (human hepatocellular carcinoma). The IC50 for PSP and Ag-NPs were 65.4 and 24.5 µg/mL, respectively. Moreover, cell apoptosis assays for PSP and Ag-NPs against the growth of Hep-G2 cells revealed superior growth inhibitory effects of the green synthesized Ag-NPs that encouraged tracing the apoptotic signalling pathway. In conclusion, the current study demonstrated an unprecedented approach for the green synthesis of silver nanoparticles (NPs), using the polysaccharide of Spirulina platensis as reducing and capping agents, with superior anticancer activity against a hepatocellular carcinoma cell line

    Enhanced dielectric properties of zinc doped bentonite composites: an effect of cobalt doping concentrations and tight binding calculation

    No full text
    In this study we have successfully synthesized undoped and Zn and Co incorporated bentonite samples. The amount of Zn was kept constant while as Co amount was varied. All the synthesized samples were characterized using x-ray diffraction analysis which confirms the predominant presence of montmorillonite in all the samples thus confirming successful formation of bentonite. Similarly, EDX analysis confirms successful incorporation of Zn and Co in Ben sample. The analysis of the dielectric properties of the produced samples was successfully carried out, and the frequency dependence of the dielectric constant and dielectric loss was explored. According to the results, all the samples exhibit considerable dielectric dispersion at lower frequencies, whereas steady dielectric constant and modest dielectric loss are shown at higher frequencies. The effect of Zn, Co incorporation and temperature dependence of dielectric behaviour of all the samples was also analysed and it was observed that at low temperatures undoped Ben samples showed high dielectric constant while as at higher temperatures the incorporation of Zn and Co enhances the dielectric constant of as prepared sample. Similarly, the variation of conductivity of as prepared samples with frequency and temperature was analysed and it was observed that all the samples show similar conduction behaviour and follows correlated barrier hopping type of conduction. The real and imaginary part of electric modulus as a function of frequency was also analysed. Further, theoretical analysis showed considerable change in HUMO and LUMO which is considered as a main reason responsible for change in dielectric characteristics of Ben and Zn/Co incorporated samples. From this study it was observed that the incorporation of metal ions into the layered bentonite improved the dielectric properties at high temperature thus this study provides a new insight into the development of new dielectric materials which could be used under high temperature operation conditions

    Green Synthetic Approaches of 2-Hydrazonothiazol-4(5<i>H</i>)-ones Using Sustainable Barium Oxide-Chitosan Nanocomposite Catalyst

    No full text
    The diverse applications of metal oxide-biopolymer matrix as a nanocomposite heterogenous catalyst have caused many researches to scrutinize the potential of this framework. In this study, a novel hybrid barium oxide-chitosan nanocomposite was synthesized through a facile and cost-effective co-precipitation method by doping barium oxide nanoparticles within the chitosan matrix at a weight percentage of 20 wt.% BaO-chitosan. A thin film of the novel hybrid material was produced by casting the nanocomposite solution in a petri dish. Several instrumental methods, including Fourier-transform infrared (FTIR), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD), were used to analyze and characterize the structure of the BaO-CS nanocomposite. The chemical interaction with barium oxide molecules resulted in a noticeable displacement of the most significant chitosan-specific peaks in the FTIR spectra. When the surface morphology of SEM graphs was analyzed, a dramatic morphological change in the chitosan surface was also discovered; this morphological change can be attributed to the surface adsorption of BaO molecules. Additionally, the patterns of the XRD demonstrated that the crystallinity of the material, chitosan, appears to be enhanced upon interaction with barium oxide molecules with the active sites, OH and NH2 groups, along the chitosan backbone. The prepared BaO-CS nanocomposite can be used successfully as an effective heterogenous recyclable catalyst for the reaction of N,N′-(alkane-diyl)bis(2-chloroacetamide) with 2-(arylidinehydrazine)-1-carbothioamide as a novel synthetic approach to prepare 2-hydrazonothiazol-4(5H)-ones. This new method provides a number of benefits, including quick and permissive reaction conditions, better reaction yields, and sustainable catalysts for multiple uses

    Bio-Based (Chitosan-ZnO) Nanocomposite: Synthesis, Characterization, and Its Use as Recyclable, Ecofriendly Biocatalyst for Synthesis of Thiazoles Tethered Azo Groups

    No full text
    In recent years, nanotechnology has become a considerable research interest in the area of preparation of nanocatalysts based on naturally occurring polysaccharides. Chitosan (CS), as a naturally occurring biodegradable and biocompatible polysaccharide, is successfully utilized as an ideal template for the immobilization of metal oxide nanoparticles. In this study, zinc oxide nanoparticles have been doped within a chitosan matrix at dissimilar weight percentages (5, 10, 15, 20, and 25 wt.% CS/ZnO) and have been fabricated by using a simple solution casting method. The prepared solutions of the nanocomposites were cast in a Petri-dish and were subsequently shaped as a thin film. After that, the structural features of the nanocomposite film have been studied by measuring the FTIR, SEM, and XRD analytical tools. FTIR spectra showed the presence of some changes in the major characteristic peaks of chitosan due to interaction with ZnO nanoparticles. In addition, SEM graphs exhibited dramatic morphology changes on the chitosan surface, which is attributed to the surface adsorption of ZnO molecules. Based on the results of the investigated organic catalytic reactions, the prepared CS/ZnO nanocomposite film (20 wt.%) could be a viable an effective, recyclable, and heterogeneous base catalyst in the synthesis of thiazoles. The results showed that the nanocomposite film is chemically stable and can be collected and reused in the investigated catalytic reactions more than three times without loss of its catalytic activity

    Synthesis, Characterization, Antioxidant, and Anticancer Activity against Colon Cancer Cells of Some Cinnamaldehyde-Based Chalcone Derivatives

    No full text
    The purpose of the current investigation was to produce cinammaldehyde-based chalcone derivatives (3a–k) to evaluate their potential effectiveness as antioxidant and inhibitory agents versus human Caco-2 cancer cells. The findings obtained using the DPPH assay showed that compound 3e had the highest effective antioxidant activity with the best IC50 value compared with the other compounds. Moreover, the cytotoxic findings revealed that compound 3e was the best compound for inhibiting Caco-2 development in contrast to all other produced derivatives, with the lowest IC50 concentration (32.19 ± 3.92 µM), and it also had no detrimental effects on healthy human lung cells (wi38 cells). Exposure of Caco-2 cells with this IC50 value of compound 3e resulted in a substantial rise in the number of early and late cells that are apoptotic with a significant comet nucleus when compared with control cells employing the annexin V/PI and comet evaluations, respectively. Furthermore, qRT-PCR and ELISA examinations indicated that compound 3e significantly altered the expression of genes and their relative proteins related to apoptosis in the treated Caco-2 cells, thus significantly inhibiting Caco-2 growth through activating Caspase-3 via an intrinsic apoptotic pathway. As a result, compound 3e could serve as an effective therapy for human colon cancer
    corecore