15 research outputs found

    Rare missense variants in Tropomyosin-4 (TPM4) are associated with platelet dysfunction, cytoskeletal defects, and excessive bleeding

    Get PDF
    Background: A significant challenge is faced for the genetic diagnosis of inherited platelet disorders in which candidate genetic variants can be found in more than 100 bleeding, thrombotic, and platelet disorder genes, especially within families in which there are both normal and low platelet counts. Genetic variants of unknown clinical significance (VUS) are found in a significant proportion of such patients in which functional studies are required to prove pathogenicity. Objective: To identify the genetic cause in patients with a suspected platelet disorder and subsequently perform a detailed functional analysis of the candidate genetic variants found. Methods: Genetic and functional studies were undertaken in three patients in two unrelated families with a suspected platelet disorder and excessive bleeding. A targeted gene panel of previously known bleeding and platelet genes was used to identify plausible genetic variants. Deep platelet phenotyping was performed using platelet spreading analysis, transmission electron microscopy, immunofluorescence, and platelet function testing using lumiaggregometry and flow cytometry. Results: We report rare conserved missense variants (p.R182C and p.A183V) in TPM4 encoding tromomyosin-4 in 3 patients. Deep platelet phenotyping studies revealed similar platelet function defects across the 3 patients including reduced platelet secretion, and aggregation and spreading defects suggesting that TPM4 missense variants impact platelet function and show a disordered pattern of tropomyosin staining. Conclusions: Genetic and functional TPM4 defects are reported making TPM4 a diagnostic grade tier 1 gene and highlights the importance of including TPM4 in diagnostic genetic screening for patients with significant bleeding and undiagnosed platelet disorders, particularly for those with a normal platelet count

    Optimal central-place foraging by beavers: Tree-size selection in relation to defensive chemicals of quaking aspen

    Full text link
    At a newly occupied pond, beavers preferentially felled aspen smaller than 7.5 cm in diameter and selected against larger size classes. After one year of cutting, 10% of the aspen had been cut and 14% of the living aspen exhibited the juvenile growth form. A phenolic compound which may act as a deterrent to beavers was found in low concentrations in aspen bark, and there was no significant regression of relative concentration of this compound on tree diameter. At a pond which had been intermittently occupied by beavers for over 20 years, beavers selected against aspen smaller than 4.5 cm in diameter, and selected in favor of aspen larger than 19.5 cm in diameter. After more than 28 years of cutting at this site, 51% of the aspen had been cut and 49% of the living aspen were juvenileform. The phenolic compound was found in significantly higher concentrations in aspen bark than at the newly occupied site, and there was a significant negative regression of relative concentration on tree diameter. The results of this study show that responses to browsing by trees place constraints on the predictive value of standard energy-based optimal foraging models, and limitations on the use of such models. Future models should attempt to account for inducible responses of plants to damage and increases in concentrations of secondary metabolites through time.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47775/1/442_2004_Article_BF00379963.pd

    Simulated winter browsing may lead to induced susceptibility of willows to beavers in spring

    No full text
    Browsing may lead to an induced resistance or susceptibility of the plant to the herbivore. We tested the effect of winter browsing by Eurasian beavers (Castor fiber L., 1758) on food quality of holme willows (Salix dasyclados Wimm.) in and after the following growth season. Shrubs were pruned in February, and new shoots from these (cut) shrubs were compared with those of untreated (uncut) ones in May and November. The shoots were analysed for dry matter, nitrogen, acid detergent fibre, and total phenolics. In May, the leaves from the cut treatment had a better food quality (more water, more nitrogen, and less phenolics) than those from the uncut one. There was in part also a systemic response, with lower total phenolics in both the cut and untreated parts of pruned shrubs (uncut–cut) than in the uncut shrubs. In November, we did not find significant differences in biochemistry of bark among cut, uncut, or uncut–cut treatments. These results are in accordance with a cafeteria experiment in the field: in May the beavers preferred shoots from the cut treatment, but in November they showed no preference. The results suggest that willows invest in compensatory growth rather than a defence response early in the regrowing phase.

    An Ethnobiological Approach to Reconstructing Indigenous Fire Regimes in the Foothill Chaparral of the Western Sierra Nevada

    No full text
    corecore