10 research outputs found

    Bioactive Endophytes Warrant Intensified Exploration and Conservation

    Get PDF
    A key argument in favor of conserving biodiversity is that as yet undiscovered biodiversity will yield products of great use to humans. However, the link between undiscovered biodiversity and useful products is largely conjectural. Here we provide direct evidence from bioassays of endophytes isolated from tropical plants and bioinformatic analyses that novel biology will indeed yield novel chemistry of potential value.We isolated and cultured 135 endophytic fungi and bacteria from plants collected in Peru. nrDNAs were compared to samples deposited in GenBank to ascertain the genetic novelty of cultured specimens. Ten endophytes were found to be as much as 15–30% different than any sequence in GenBank. Phylogenetic trees, using the most similar sequences in GenBank, were constructed for each endophyte to measure phylogenetic distance. Assays were also conducted on each cultured endophyte to record bioactivity, of which 65 were found to be bioactive.The novelty of our contribution is that we have combined bioinformatic analyses that document the diversity found in environmental samples with culturing and bioassays. These results highlight the hidden hyperdiversity of endophytic fungi and the urgent need to explore and conserve hidden microbial diversity. This study also showcases how undergraduate students can obtain data of great scientific significance

    The PARE Project: A Short Course-Based Research Project for National Surveillance of Antibiotic-Resistant Microbes in Environmental Samples

    No full text
    Course-based research experiences (CREs) have been proposed as an inclusive model to expose all students, including those at institutions without a strong research infrastructure, to research at an early stage. Converting an entire semester-long course can be time consuming for instructors and expensive for institutions, so we have developed a short CRE that can be implemented in a variety of life science course types. The Prevalence of Antibiotic Resistance in the Environment (PARE) project uses common microbiology methods and equipment to engage students in nationwide surveillance of environmental soil samples to document the prevalence of antibiotic-resistant bacteria. The project has been implemented at institutions ranging from community colleges to doctoral-granting institutions in 30 states plus Puerto Rico. Programmatic feedback was obtained from instructors over three iterations, and revisions were made based on this feedback. Student learning was measured by pre/post assessment in a subset of institutions. Outcomes indicate that students made significant gains in the project learning goals

    Learning and STEM identity gains from an online module on sequencing-based surveillance of antimicrobial resistance in the environment: An analysis of the PARE-Seq curriculum.

    No full text
    COVID-19 necessitated the rapid transition to online learning, challenging the ability of Science, Technology, Engineering, and Math (STEM) professors to offer laboratory experiences to their students. As a result, many instructors sought online alternatives. In addition, recent literature supports the capacity of online curricula to empower students of historically underrepresented identities in STEM fields. Here, we present PARE-Seq, a virtual bioinformatics activity highlighting approaches to antimicrobial resistance (AMR) research. Following curricular development and assessment tool validation, pre- and post-assessments of 101 undergraduates from 4 institutions revealed that students experienced both significant learning gains and increases in STEM identity, but with small effect sizes. Learning gains were marginally modified by gender, race/ethnicity, and number of extracurricular work hours per week. Students with more extracurricular work hours had significantly lower increase in STEM identity score after course completion. Female-identifying students saw greater learning gains than male-identifying, and though not statistically significant, students identifying as an underrepresented minority reported larger increases in STEM identity score. These findings demonstrate that even short course-based interventions have potential to yield learning gains and improve STEM identity. Online curricula like PARE-Seq can equip STEM instructors to utilize research-driven resources that improve outcomes for all students, but support must be prioritized for students working outside of school

    Tiny Earth: A big idea for stem education and antibiotic discovery

    No full text
    The world faces two seemingly unrelated challenges—a shortfall in the STEM workforce and increasing antibiotic resistance among bacterial pathogens. We address these two challenges with Tiny Earth, an undergraduate research course that excites students about science and creates a pipeline for antibiotic discovery
    corecore