59 research outputs found

    A new paradigm in respiratory hygiene: modulating respiratory secretions to contain cough bioaerosol without affecting mucus clearance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several strategies and devices have been designed to protect health care providers from acquiring transmissible respiratory diseases while providing care. In modulating the physical characteristics of the respiratory secretions to minimize the aerosolization that facilitates transmission of airborne diseases, a fundamental premise is that the prototype drugs have no adverse effect on the first line of respiratory defense, clearance of mucus by ciliary action.</p> <p>Methods</p> <p>To assess and demonstrate the primary mechanism of our mucomodulators (XLs), we have built our evidence moving from basic laboratory studies to an <it>ex-vivo </it>model and then to an <it>in-vivo </it>large animal model. We exposed anesthetized dogs without hypersecretion to different dose concentrations of aerosolized XL "B", XL "D" and XL "S". We assessed: cardio-respiratory pattern, tracheal mucus clearance, airway patency, and mucus viscoelastic changes.</p> <p>Results</p> <p>Exposure of frog palate mucus to XLs did not affect the clearance of mucus by ciliary action. Dogs maintained normal cardio-respiratory pattern with XL administration. Tracheal mucociliary clearance in anesthetized dogs indicated a sustained 40% mean increase. Tracheal mucus showed increased filance, and there was no mucus retention in the airways.</p> <p>Conclusion</p> <p>The <it>ex-vivo </it>frog palate and the <it>in-vivo </it>mammalian models used in this study, appear to be appropriate and complement each other to better assess the effects that our mucomodulators exert on the mucociliary clearance defence mechanism. The physiological function of the mucociliary apparatus was not negatively affected in any of the two epithelial models. Airway mucus crosslinked by mucomodulators is better cleared from an intact airway and normally functioning respiratory system, either due to enhanced interaction with cilia or airflow-dependent mechanisms. Data obtained in this study allow us to assure that we have complied with the fundamental requirement criteria established in the initial phase of developing the concept of mucomodulation: Can we modulate the physical characteristics of the respiratory secretions to reduce aerosolization without affecting normal mucociliary clearance function, or even better improving it?</p

    Periodate-treated, non-anticoagulant heparin-carrying polystyrene (NAC-HCPS) affects angiogenesis and inhibits subcutaneous induced tumour growth and metastasis to the lung

    Get PDF
    Periodate-treated, non-anticoagulant heparin-carrying polystyrene consists of about ten periodate-oxidized, alkaline-degraded low molecular weight-heparin chains linked to a polystyrene core and has a markedly lower anti-coagulant activity than heparin. In this study, we evaluated the effect of non-anticoagulant heparin-carrying polystyrene on tumour growth and metastasis. Non-anticoagulant heparin-carrying polystyrene has a higher activity to inhibit vascular endothelial growth factor-165-, fibroblast growth factor-2- or hepatocyte growth factor-induced human microvascular endothelial cell growth than heparin, ten periodate-oxidized-heparin and ten periodate-oxidized-low molecular weight-heparin, which is probably due to the heparin-clustering effect of non-anticoagulant heparin-carrying polystyrene. Non-anticoagulant heparin-carrying polystyrene inhibited human microvascular endothelial cell, B16 melanoma and Lewis lung cancer cell adhesion to Matrigel-coated plates. Non-anticoagulant heparin-carrying polystyrene also showed strong inhibitory activities in the tubular formation of endothelial cells on Matrigel and B16-melanoma and Lewis lung cancer cell invasion in a Matrigel-coated chamber assay. In vivo studies showed that growth of subcutaneous induced tumours and lung metastasis of B16-melanoma and Lewis lung cancer cells were more effectively inhibited by non-anticoagulant heparin-carrying polystyrene than ten periodate-oxidized-heparin and ten periodate-oxidized-low molecular weight-heparin. Furthermore, non-anticoagulant heparin-carrying polystyrene markedly reduced the number of CD34-positive vessels in subcutaneous Lewis lung cancer tumours, indicating a strong inhibition of angiogenesis. These results suggest that non-anticoagulant heparin-carrying polystyrene has an inhibitory activity on angiogenesis and tumour invasion and may be very useful in cancer therapy

    Neuropeptides and Airway Submucosal Gland Secretion

    No full text

    Electrolyte Transport in the Lungs

    No full text
    corecore