5 research outputs found

    Cellular Properties and Expression of Pluripotent Markers in Human Dental Pulp Stem Cells Cultured in Serum-Free Medium

    No full text
    Introduction: The standard isolation and expansion of human Dental Pulp Stem Cells (DPSCs) under invitro conditions normally involve the usage of Fetal Bovine Serum (FBS). However, its animal-origin poses possible concerns for clinically relevant procedures. This critical issue compels the use of Xenogeneic-Free (XF) or human-origin alternatives to FBS for culture expansion and differentiation of DPSCs to determine the usefulness for translating into therapeutic clinical applications. Aim: To evaluate the cellular characteristics and expression of pluripotent markers in DPSCs cultured using Serum-Containing Medium (SCM-DPSCs) and Serum-Free Medium (SFMDPSCs). Materials and Methods: This in-vitro descriptive study was conducted at NITTE (Deemed to be University), Mangaluru, Karnataka, India, from June 2019 to August 2020. DPSCs were isolated from impacted third molars. The culture expanded DPSCs in serum-containing and serum-free media were analysed on their morphology, viability, proliferation rate, Population Doubling Time (PDT), Alkaline Phosphatase (ALP) activity, cell surface markers expression, osteogenic and adipogenic potential, and the relative expression of selected pluripotent genes. Results: The primary culture of DPSCs established in SCM and SFM showed spindle shaped fibroblastic morphology with >80% viability from passage 1 (P1) to P4. A significant (p-value<0.05) difference in the proliferation rates in terms of cell numbers between SCM-DPSCs and SFM-DPSCs was observed (day 6: 3×105 vs 0.8×105 ; day 9: 5.8×105 vs 1.27×105 ; day 12: 7.8×105 vs 1.56×105 , respectively). The average PDT values recorded in SCM- and SFM-DPSCs were 44.33 hours and 58.41 hours, respectively. A slightly higher expression of ALP activity was observed in SCM-DPSCs than in SFM-DPSCs. Flow cytometry analysis showed that both DPSCs were positive for CD29, CD73, CD90, and negative for CD34 and CD45. The expression of OCT4 and NANOG was relatively higher in SCM-DPSCs compared to SFM-DPSCs. Further, SCM-DPSCs showed the higher levels of SOX2 and SSEA4, but did not exhibit any significant differences in their expression levels. Conclusion: The results showed that DPSCs in FBS displayed better growth kinetics and stemness markers expression along with more propensities towards lineage differentiation. SFM can be used to establish and expand DPSCs with characteristics of multipotent stem cells, but needs further research for its optimisation

    Assessment of proliferation, clonogenic assay, and osteogenic differentiation of human periodontal ligament stem cells following application of orthodontic forces

    No full text
    Context: The proliferation and differentiation of human periodontal ligament stem cells (hPDLSC) into other cell types are also mediated by mechanical stresses; they might offer therapeutic benefits in tissue regeneration and angiogenesis. Objectives: The study was planned to assess the proliferation, clonogenic potential, and osteogenic differentiation of human periodontal ligament stem cells (PDLSC) following the application of light and heavy orthodontic forces. Materials and Methods: A couple forces of 50 gm (light force) were applied on the 1st premolar on the one side and 250 gm (heavy force) on the contralateral side in the upper arch of patients requiring orthodontic treatment with extraction of all 1st premolars. After 30 days, periodontal tissues were scrapped from extracted teeth for the establishment of PDLSC in vitro. PDLC from the lower premolar teeth where no orthodontic force was applied acted as the control group. Morphology, viability, proliferating rate and population doubling time, clonogenicity, and alkaline phosphatase activity were analysed. Result: The osteogenic potential was confirmed by Alizarin red staining and the expression of the osteogenic markers by qRT-PCR. The morphology, growth kinetics, potency, and osteogenic lineage characteristics inferred the application of high force reduced the proliferative ability and osteogenesis of PDLSC, though the difference was not significant. Conclusion: The established PDLSCs demonstrated their MSC-like properties based on morphology, growth kinetics, colony forming ability, and AP activity. The culture-expanded PDLSCs showed their differentiation potential into osteocytes. The application of high force reduced the proliferative ability and osteogenesis of PDLSCs, variations were not significant

    Removal of cumulus cells before oocyte nuclear maturation enhances enucleation rates without affecting the developmental competence of porcine cloned embryos

    Get PDF
    The present study compared the efficiency of somatic cell nuclear transfer (SCNT) using porcine oocytes that were denuded of their cumulus cells at different maturation time. In pre-denuded group, the cumulus cells from cumulus-oocyte complexes (COCs) were removed at 29 hr post in vitro maturation (hpm) and followed by further culture for 12 hr. In control group, as a commonly followed procedure, cumulus cells were removed from COCs at 41 hpm. The majority of porcine oocytes at 29 hpm were observed in metaphase of the first meiotic division (MI). At 41 hpm, no significant (P > 0.05) differences were observed in nuclear maturation and mitochondrial distribution of oocytes between pre-denuded and control groups. However, in pre-denuded group oocytes, metaphase II (MII) plate and spindle were located closely as ‘adjacent’ to the first polar body (PB1), resulting in an increased enucleation rates than in control group oocytes by blind enucleation method. Following SCNT and parthenogenesis (PA) using pre-denuded group and control group oocytes, no significant (P > 0.05) differences were observed with respect to the development, total cell number, incidence of apoptosis and the expression profile of developmentally important genes (Pou5f1, Dnmt1, Dnmt3a, Igf2r, Bax, Bcl2 and Glut1) at the blastocyst stage. In conclusion, the removal of cumulus cells at 29 hpm in porcine oocytes increased the enucleation rates through proper positioning of PB1 without compromising the quality of SCNT embryos during preimplantation development. Hence, this could be a valuable strategy to improve the SCNT efficiency in a porcine model
    corecore