54 research outputs found

    Direct and sensitive detection of Trypanosoma evansi by polymerase chain reaction

    Get PDF
    The mechanically transmitted haemoflagellate,Trypanosoma evansicauses 'surra', a wasting disease of domestic animals and is highly endemic in distribution in Southeast Asia. The detection ofT. evansiis important for improving the epizootiological and animal health status of the region. The specificity and sensitivity of polymerase chain reaction (PCR) using oligonucleotide primers constructed fromT. evansirepetitive DNA sequences were studied in the present investigation. Using the assay, it was possible to amplify template DNA ofT. evansiderived from buffaloes, camels and horses to a threshold sensitivity level of 0.5 pg and to detect DNA from as few as five organisms in 10 (l crude blood samples. Following experimental infection of calves with 5 × 105T. evansi, positive signals could be observed as early as 12 h post-infection. DNAs from two common haemoflagellates of cattle,Babesia bigeminaandTheileria annulatawere not amplified with the primers

    Identification of Trypanosoma evansi by DNA hybridisation using a non-radioactive probe generated by arbitrary primer PCR: Short communication

    Get PDF
    A highly reproducible, dominant, monomorphic fragment of 473 base pair (bp) amplified from the genome of Trypanosoma evansi by arbitrary primer — polymerase chain reaction (AP-PCR) was labelled with digoxigenin and investigated for its potential as DNA probe. Dot-blot hybridisation of total genomic DNA with the probe proved useful in detecting bubaline, cameline and equine strains of T. evansi down to 10 pg of parasite template DNA. No cross-hybridisation was seen with Babesia bigemina, Theileria annulata and the bubaline host DNA. This probe may facilitate laboratory identification of T. evansi in developing countries, without the inherent risk associated with radioisotopes

    The role of mutations in core protein of hepatitis B virus in liver fibrosis

    Get PDF
    The core protein of hepatitis B virus encompasses B- and T-cell immunodominant epitopes and subdivided into two domains: the N-terminal and the functional C-terminal consisted phosphorylation sites. Mutations of the core gene may change the conformation of the core protein or cause alteration of important epitopes in the host immune response. In this study twenty nine men (mean age 40 ± 9 years old) with chronic hepatitis B were recruited for direct sequencing of the core gene. Serum ALT and HBV DNA level were measured at the time of liver biopsy. The effects of core protein mutations on patients' characteristics and subsequently mutations in B cell, T helper and cytotoxic T lymphocyte (CTL) epitopes and also C-terminal domain of core protein on the activity of liver disease was evaluated. Liver fibrosis was significantly increased in patients with core protein mutation (1.0 ± 0.8 vs 1.9 ± 1.4 for mean stage of fibrosis P = 0.05). Mutations in CTL epitopes and in phosphorylation sites of C-terminal domain of core protein also were associated with higher liver fibrosis (P = 0.003 and P = 0.04; Fisher's exact test for both). Patients with mutation in C-terminal domain had higher serum ALT (62 ± 17 vs 36 ± 12 IU/l, p = 0.02). Patients with mutations in B cell and T helper epitopes did not show significant difference in the clinical features. Our data suggests that core protein mutations in CTL epitopes and C-terminal domain accompanied with higher stage of liver fibrosis may be due to alterations in the function of core protein

    Serine Phosphoacceptor Sites within the Core Protein of Hepatitis B Virus Contribute to Genome Replication Pleiotropically

    Get PDF
    The core protein of hepatitis B virus can be phosphorylated at serines 155, 162, and 170. The contribution of these serine residues to DNA synthesis was investigated. Core protein mutants were generated in which each serine was replaced with either alanine or aspartate. Aspartates can mimic constitutively phosphorylated serines while alanines can mimic constitutively dephosphorylated serines. The ability of these mutants to carry out each step of DNA synthesis was determined. Alanine substitutions decreased the efficiency of minus-strand DNA elongation, primer translocation, circularization, and plus-strand DNA elongation. Aspartate substitutions also reduced the efficiency of these steps, but the magnitude of the reduction was less. Our findings suggest that phosphorylated serines are required for multiple steps during DNA synthesis. It has been proposed that generation of mature DNA requires serine dephosphorylation. Our results suggest that completion of rcDNA synthesis requires phosphorylated serines

    Secretion of Genome-Free Hepatitis B Virus – Single Strand Blocking Model for Virion Morphogenesis of Para-retrovirus

    Get PDF
    As a para-retrovirus, hepatitis B virus (HBV) is an enveloped virus with a double-stranded (DS) DNA genome that is replicated by reverse transcription of an RNA intermediate, the pregenomic RNA or pgRNA. HBV assembly begins with the formation of an “immature” nucleocapsid (NC) incorporating pgRNA, which is converted via reverse transcription within the maturing NC to the DS DNA genome. Only the mature, DS DNA-containing NCs are enveloped and secreted as virions whereas immature NCs containing RNA or single-stranded (SS) DNA are not enveloped. The current model for selective virion morphogenesis postulates that accumulation of DS DNA within the NC induces a “maturation signal” that, in turn, triggers its envelopment and secretion. However, we have found, by careful quantification of viral DNA and NCs in HBV virions secreted in vitro and in vivo, that the vast majority of HBV virions (over 90%) contained no DNA at all, indicating that NCs with no genome were enveloped and secreted as empty virions (i.e., enveloped NCs with no DNA). Furthermore, viral mutants bearing mutations precluding any DNA synthesis secreted exclusively empty virions. Thus, viral DNA synthesis is not required for HBV virion morphogenesis. On the other hand, NCs containing RNA or SS DNA were excluded from virion formation. The secretion of DS DNA-containing as well as empty virions on one hand, and the lack of secretion of virions containing single-stranded (SS) DNA or RNA on the other, prompted us to propose an alternative, “Single Strand Blocking” model to explain selective HBV morphogenesis whereby SS nucleic acid within the NC negatively regulates NC envelopment, which is relieved upon second strand DNA synthesis

    Generation of Covalently Closed Circular DNA of Hepatitis B Viruses via Intracellular Recycling Is Regulated in a Virus Specific Manner

    Get PDF
    Persistence of hepatitis B virus (HBV) infection requires covalently closed circular (ccc)DNA formation and amplification, which can occur via intracellular recycling of the viral polymerase-linked relaxed circular (rc) DNA genomes present in virions. Here we reveal a fundamental difference between HBV and the related duck hepatitis B virus (DHBV) in the recycling mechanism. Direct comparison of HBV and DHBV cccDNA amplification in cross-species transfection experiments showed that, in the same human cell background, DHBV but not HBV rcDNA converts efficiently into cccDNA. By characterizing the distinct forms of HBV and DHBV rcDNA accumulating in the cells we find that nuclear import, complete versus partial release from the capsid and complete versus partial removal of the covalently bound polymerase contribute to limiting HBV cccDNA formation; particularly, we identify genome region-selectively opened nuclear capsids as a putative novel HBV uncoating intermediate. However, the presence in the nucleus of around 40% of completely uncoated rcDNA that lacks most if not all of the covalently bound protein strongly suggests a major block further downstream that operates in the HBV but not DHBV recycling pathway. In summary, our results uncover an unexpected contribution of the virus to cccDNA formation that might help to better understand the persistence of HBV infection. Moreover, efficient DHBV cccDNA formation in human hepatoma cells should greatly facilitate experimental identification, and possibly inhibition, of the human cell factors involved in the process

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Not Available

    No full text
    Not AvailableRNA interference is an emerging scientific tool that is making inroads in medical science. However, its application in the veterinary field is still in infancy. The technology offers several potential benefits that include disease therapeutics and increasing animal productivity. In this article, we summarize the available information on RNA Interference Technology including mechanism of action, possible routes of delivery and avenues to exploit it for the benefit of animals.Not Availabl
    • 

    corecore