15 research outputs found

    Democratie doorgelicht : het functioneren van de Nederlandse democratie

    Get PDF
    In Democratie doorgelicht – Het functioneren van de Nederlandse democratie legt een vijftigtal politicologen en bestuurskundigen het huidige Nederlandse politieke bestel langs democratische meetlat. Kernvraag van deze unieke gezamenlijke onderneming is of de Nederlandse democratie nog wel naar behoren functioneert. Velen hebben grote zorgen over bestuurlijke integriteit en een kloof tussen kiezers en gekozenen. Wat is eigenlijk het bestaansrecht van al die politieke partijen? Hoe zit het met de opkomst van populisme en de rol van de media hierbij? En wat betekent dit alles in het licht van naar Brussel weglekkende bevoegdheden zonder dat daarop controle lijkt te bestaan? Los van eigen politieke voorkeuren, zonder opgeheven vinger en zonder overbodig vakjargon vormt deze eerste democratic audit een standaardwerk over de belangrijkste aspecten van onze democratie.9789400600010 (ebook)Wetensch. publicati

    Elevated risk of infection with SARS-CoV-2 Beta, Gamma, and Delta variants compared with Alpha variant in vaccinated individuals

    Get PDF
    The extent to which severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) break through infection- or vaccine-induced immunity is not well understood. We analyzed 28,578 sequenced SARS-CoV-2 samples from individuals with known immune status obtained through national community testing in the Netherlands from March to August 2021. We found evidence of an increased risk of infection by the Beta (B.1.351), Gamma (P.1), or Delta (B.1.617.2) variants compared with the Alpha (B.1.1.7) variant after vaccination. No clear differences were found between vaccines. However, the effect was larger in the first 14 to 59 days after complete vaccination compared with ≥60 days. In contrast to vaccine-induced immunity, there was no increased risk for reinfection with Beta, Gamma, or Delta variants relative to the Alpha variant in individuals with infection-induced immunity.</p

    Quantifying The Impact Of Human Leukocyte Antigen On The Human Gut Microbiota

    Get PDF
    The composition of the gut microbiota is affected by a number of factors, including the innate and adaptive immune system. The major histocompatibility complex (MHC), or the human leukocyte antigen (HLA) in humans, performs an essential role in vertebrate immunity and is very polymorphic in different populations. HLA determines the specificity of T lymphocyte and natural killer (NK) cell responses, includingthose against the commensal bacteria present in the human gut. Thus, it is likely that our HLA molecules, and thereby the adaptive immune response, can shape the composition of our microbiota. Here, we investigated the effect of HLA haplotype on the microbiota composition. We performed HLA typing and microbiota composition analyses on 3,002 public human gut microbiome data sets. We found that individuals with functionally similar HLA molecules are also similar in their microbiota composition. Our results show a statistical association between host HLA haplotype and gut microbiota composition. Because the HLA haplotype is a readily measurable parameter of the human immune system, these results open the door to incorporating the genetics of the immune system into predictive microbiome models. IMPORTANCE The microorganisms that live in the digestive tracts of humans, known as the gut microbiota, are essential for hosts’ survival, as they support crucial functions. For example, they support the host in facilitating the uptake of nutrients and give colonization resistance against pathogens. The composition of the gut microbiota varies among humans. Studies have proposed multiple factors driving the observed variation, including diet, lifestyle, and health condition. Another major influence on the microbiota is the host’s genetic background. We hypothesized the immune system to be one of the most important genetic factors driving the differences observed between gut microbiotas. Therefore, we searched for a link between the polymorphic molecules that shape human immune responses and the composition of the microbiota. HLA molecules are the most polymorphic molecules in our genome and therefore makes an excellent candidate to test such an association. To our knowledge for the first time, our results indicate a significant impact of the HLA on the human gut microbiota

    Quantifying The Impact Of Human Leukocyte Antigen On The Human Gut Microbiota

    No full text
    The composition of the gut microbiota is affected by a number of factors, including the innate and adaptive immune system. The major histocompatibility complex (MHC), or the human leukocyte antigen (HLA) in humans, performs an essential role in vertebrate immunity and is very polymorphic in different populations. HLA determines the specificity of T lymphocyte and natural killer (NK) cell responses, includingthose against the commensal bacteria present in the human gut. Thus, it is likely that our HLA molecules, and thereby the adaptive immune response, can shape the composition of our microbiota. Here, we investigated the effect of HLA haplotype on the microbiota composition. We performed HLA typing and microbiota composition analyses on 3,002 public human gut microbiome data sets. We found that individuals with functionally similar HLA molecules are also similar in their microbiota composition. Our results show a statistical association between host HLA haplotype and gut microbiota composition. Because the HLA haplotype is a readily measurable parameter of the human immune system, these results open the door to incorporating the genetics of the immune system into predictive microbiome models. IMPORTANCE The microorganisms that live in the digestive tracts of humans, known as the gut microbiota, are essential for hosts’ survival, as they support crucial functions. For example, they support the host in facilitating the uptake of nutrients and give colonization resistance against pathogens. The composition of the gut microbiota varies among humans. Studies have proposed multiple factors driving the observed variation, including diet, lifestyle, and health condition. Another major influence on the microbiota is the host’s genetic background. We hypothesized the immune system to be one of the most important genetic factors driving the differences observed between gut microbiotas. Therefore, we searched for a link between the polymorphic molecules that shape human immune responses and the composition of the microbiota. HLA molecules are the most polymorphic molecules in our genome and therefore makes an excellent candidate to test such an association. To our knowledge for the first time, our results indicate a significant impact of the HLA on the human gut microbiota
    corecore