115 research outputs found

    Uncompensated magnetization and exchange-bias field in La0.7_{0.7}Sr0.3_{0.3}MnO3_3/YMnO3_3 bilayers: The influence of the ferromagnetic layer

    Full text link
    We studied the magnetic behavior of bilayers of multiferroic and nominally antiferromagnetic o-YMnO3_3 (375~nm thick) and ferromagnetic La0.7_{0.7}Sr0.3_{0.3}MnO3_3 and La0.67_{0.67}Ca0.33_{0.33}MnO3_3 (8…225 8 \ldots 225~nm), in particular the vertical magnetization shift MEM_E and exchange bias field HEH_E for different thickness and magnetic dilution of the ferromagnetic layer at different temperatures and cooling fields. We have found very large MEM_E shifts equivalent to up to 100\% of the saturation value of the o-YMO layer alone. The overall behavior indicates that the properties of the ferromagnetic layer contribute substantially to the MEM_E shift and that this does not correlate straightforwardly with the measured exchange bias field HEH_E.Comment: 10 figures, 8 page

    On the low-field Hall coefficient of graphite

    Full text link
    We have measured the temperature and magnetic field dependence of the Hall coefficient (RHR_{\rm H}) in three, several micrometer long multigraphene samples of thickness between ∼9 \sim 9~to ∼30\sim 30~nm in the temperature range 0.1 to 200~K and up to 0.2~T field. The temperature dependence of the longitudinal resistance of two of the samples indicates the contribution from embedded interfaces running parallel to the graphene layers. At low enough temperatures and fields RHR_{\rm H} is positive in all samples, showing a crossover to negative values at high enough fields and/or temperatures in samples with interfaces contribution. The overall results are compatible with the reported superconducting behavior of embedded interfaces in the graphite structure and indicate that the negative low magnetic field Hall coefficient is not intrinsic of the ideal graphite structure.Comment: 10 pages with 7 figures, to be published in AIP Advances (2014

    Josephson-coupled superconducting regions embedded at the interfaces of highly oriented pyrolytic graphite

    Get PDF
    Transport properties of a few hundreds of nanometers thick (in the graphene plane direction) lamellae of highly oriented pyrolytic graphite (HOPG) have been investigated. Current–voltage characteristics as well as the temperature dependence of the voltage at different fixed input currents provide evidence for Josephson-coupled superconducting regions embedded in the internal two-dimensional interfaces of HOPG, reaching zero resistance at low enough temperatures

    Evidence for semiconducting behavior with a narrow band gap of Bernal graphite

    Full text link
    We have studied the resistivity of a large number of highly oriented graphite samples with areas ranging from several mm2^2 to a few μ\mum2^2 and thickness from ∼10\sim 10 nm to several tens of micrometers. The measured resistance can be explained by the parallel contribution of semiconducting graphene layers with low carrier density <109< 10^9 cm−2^{-2} and the one from metallic-like internal interfaces. The results indicate that ideal graphite with Bernal stacking structure is a narrow-gap semiconductor with an energy gap Eg∼40E_g \sim 40 meV.Comment: 14 pages, 4 Figures, to be published in New Journal of Physics (in press, 2012
    • …
    corecore