634 research outputs found

    Angular distribution and azimuthal asymmetry for pentaquark production in proton-proton collisions

    Full text link
    Angular distributions for production of the Θ+\Theta^+ pentaquark are calculated for the collisions of polarized protons with polarized target protons. We compare calculations based on different assumptions concerning spin and parity (J=1/2±,3/2±J=1/2^\pm,3/2^\pm) of the Θ+\Theta^+ state. For a wide class of interactions the spin correlation parameters describing the asymmetric angular distributions are calculated up to 250 MeV above production threshold. The deviations from the near threshold behavior are investigated.Comment: 8 pages, 5 figure

    Thermal Hadron Production in High Energy Heavy Ion Collisions

    Full text link
    We provide a method to test if hadrons produced in high energy heavy ion collisions were emitted at freeze-out from an equilibrium hadron gas. Our considerations are based on an ideal gas at fixed temperature TfT_f, baryon number density nBn_B, and vanishing total strangeness. The constituents of this gas are all hadron resonances up to a mass of 2 GeV; they are taken to decay according to the experimentally observed branching ratios. The ratios of the various resulting hadron production rates are tabulated as functions of TfT_f and nBn_B. These tables can be used for the equilibration analysis of any heavy ion data; we illustrate this for some specific cases.Comment: 12 pages (not included :13 figures + tables) report CERN-TH 6523/92 and Bielefeld preprint BI-TP 92/0

    Strangeness production time and the K+/pi+ horn

    Get PDF
    We construct a hadronic kinetic model which describes production of strange particles in ultrarelativistic nuclear collisions in the energy domain of SPS. We test this model on description of the sharp peak in the excitation function of multiplicity ratio K+/pi+ and demonstrate that hadronic model reproduces these data rather well. The model thus must be tested on other types of data in order to verify the hypothesis that deconfinement sets in at lowest SPS energies.Comment: proceedings of Hot Quarks 0

    Cavitation and bubble collapse in hot asymmetric nuclear matter

    Full text link
    The dynamics of embryonic bubbles in overheated, viscous and non-Markovian nuclear matter is studied. It is shown that the memory and the Fermi surface distortions significantly affect the hinderance of bubble collapse and determine a characteristic oscillations of the bubble radius. These oscillations occur due to the additional elastic force induced by the memory integral.Comment: Revtex file (10 pages) and 3 figure

    Kinetic Monte Carlo and Cellular Particle Dynamics Simulations of Multicellular Systems

    Full text link
    Computer modeling of multicellular systems has been a valuable tool for interpreting and guiding in vitro experiments relevant to embryonic morphogenesis, tumor growth, angiogenesis and, lately, structure formation following the printing of cell aggregates as bioink particles. Computer simulations based on Metropolis Monte Carlo (MMC) algorithms were successful in explaining and predicting the resulting stationary structures (corresponding to the lowest adhesion energy state). Here we present two alternatives to the MMC approach for modeling cellular motion and self-assembly: (1) a kinetic Monte Carlo (KMC), and (2) a cellular particle dynamics (CPD) method. Unlike MMC, both KMC and CPD methods are capable of simulating the dynamics of the cellular system in real time. In the KMC approach a transition rate is associated with possible rearrangements of the cellular system, and the corresponding time evolution is expressed in terms of these rates. In the CPD approach cells are modeled as interacting cellular particles (CPs) and the time evolution of the multicellular system is determined by integrating the equations of motion of all CPs. The KMC and CPD methods are tested and compared by simulating two experimentally well known phenomena: (1) cell-sorting within an aggregate formed by two types of cells with different adhesivities, and (2) fusion of two spherical aggregates of living cells.Comment: 11 pages, 7 figures; submitted to Phys Rev

    Virtual Meson Cloud of the Nucleon and Intrinsic Strangeness and Charm

    Get PDF
    We have applied the Meson Cloud Model (MCM) to calculate the charm and strange antiquark distribution in the nucleon. The resulting distribution, in the case of charm, is very similar to the intrinsic charm momentum distribution in the nucleon. This seems to corroborate the hypothesis that the intrinsic charm is in the cloud and, at the same time, explains why other calculations with the MCM involving strange quark distributions fail in reproducing the low x region data. From the intrinsic strange distribution in the nucleon we have extracted the strangeness radius of the nucleon, which is in agreement with other meson cloud calculations.Comment: 9 pages RevTex, 4 figure

    Contribution of the nucleon-hyperon reaction channels to K−^- production in proton-nucleus collisions

    Full text link
    The cross sections for producing K−^- mesons in nucleon-hyperon elementary processes are estimated assuming one-pion exchange and using the experimentally known pion-hyperon cross sections. The results are implemented in a transport model which is applied to calculation of proton-nucleus collisions. In significant difference to earlier estimates for heavy-ion collisions the inclusion of the nucleon-hyperon cross section roughly doubles the K−^- production in near-threshold proton-nucleus collisions

    Hydrodynamical assessment of 200 AGeV collisions

    Full text link
    We are analyzing the hydrodynamics of 200 A GeV S+S collisions using a new approach which tries to quantify the uncertainties arising from the specific implementation of the hydrodynamical model. Based on a previous phenomenological analysis we use the global hydrodynamics model to show that the amount of initial flow, or initial energy density, cannot be determined from the hadronic momentum spectra. We additionally find that almost always a sizeable transverse flow deve- lops, which causes the system to freeze out, thereby limiting the flow velocity in itself. This freeze-out dominance in turn makes a distinction between a plasma and a hadron resonance gas equation of state very difficult, whereas a pure pion gas can easily be ruled out from present data. To complete the picture we also analyze particle multiplicity data, which suggest that chemical equilibrium is not reached with respect to the strange particles. However, the over- population of pions seems to be at most moderate, with a pion chemical potential far away from the Bose divergence.Comment: 19 pages, 11 figs in separate uuencoded file, for LateX, epsf.tex, dvips, TPR-94-5 and BNL-(no number yet

    Resonance Model of πΔ→YK\pi \Delta \rightarrow Y K for Kaon Production in Heavy Ion Collisions

    Full text link
    The elementary production cross sections πΔ→YK\pi \Delta \rightarrow Y K (Y=Σ,  Λ)(Y=\Sigma,\,\, \Lambda) and πN→YK\pi N \rightarrow Y K are needed to describe kaon production in heavy ion collisions. The πN→YK\pi N \rightarrow Y K reactions were studied previously by a resonance model. The model can explain the experimental data quite well \cite{tsu}. In this article, the total cross sections πΔ→YK\pi \Delta \rightarrow Y K at intermediate energies (from the kaon production threshold to3 GeV of πΔ\pi \Delta center-of-mass energy) are calculated for the first time using the same resonance model. The resonances, N(1710) I(JP)=12(12+)N(1710)\,I(J^P) = \frac{1}{2}(\frac{1}{2}^+) and N(1720) 12(32+)N(1720)\, \frac{1}{2} (\frac{3}{2}^+) for the πΔ→ΣK\pi \Delta \rightarrow \Sigma K reactions, and N(1650) 12(12−)N(1650)\, \frac{1}{2} (\frac{1}{2}^-), N(1710) 12(12+)N(1710)\, \frac{1}{2} (\frac{1}{2}^+) and N(1720) 12(32+)N(1720)\, \frac{1}{2} (\frac{3}{2}^+) for the πΔ→ΛK\pi \Delta \rightarrow \Lambda K reactions are taken into account coherently as the intermediate states in the calculations. Also t-channel K∗(892)12(1−)K^*(892) \frac{1}{2}(1^-) vector meson exchange is included. The results show that K∗(892)K^*(892) exchange is neglegible for the πΔ→ΣK\pi \Delta \rightarrow \Sigma K reactions, whereas this meson does not contribute to the πΔ→ΛK\pi \Delta \rightarrow \Lambda K reactions. Furthemore, the πΔ→YK\pi \Delta \rightarrow Y K contributions to kaon production in heavy ion collisions are not only non-neglegible but also very different from the πN→YK\pi N \rightarrow Y K reactions. An argument valid for πN→YK\pi N \rightarrow Y K cannot be extended to πΔ→YK\pi \Delta \rightarrow Y K reactions. Therefore, cross sections for πΔ→YK\pi \Delta \rightarrow Y K including correctly the different isospins must beComment: ( Replaced with corrections of printing errors in the Table. ) 15 pages, Latex file with 4 figures, 1 figure is included in the text. A compressed uuencode file for 3 figures is appended. (A figure file format was changed.) Also available upon reques
    • …
    corecore