14 research outputs found

    Inhibition of IFN-Îł-dependent antiviral airway epithelial defense by cigarette smoke

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although individuals exposed to cigarette smoke are more susceptible to respiratory infection, the effects of cigarette smoke on lung defense are incompletely understood. Because airway epithelial cell responses to type II interferon (IFN) are critical in regulation of defense against many respiratory viral infections, we hypothesized that cigarette smoke has inhibitory effects on IFN-Îł-dependent antiviral mechanisms in epithelial cells in the airway.</p> <p>Methods</p> <p>Primary human tracheobronchial epithelial cells were first treated with cigarette smoke extract (CSE) followed by exposure to both CSE and IFN-Îł. Epithelial cell cytotoxicity and IFN-Îł-induced signaling, gene expression, and antiviral effects against respiratory syncytial virus (RSV) were tested without and with CSE exposure.</p> <p>Results</p> <p>CSE inhibited IFN-Îł-dependent gene expression in airway epithelial cells, and these effects were not due to cell loss or cytotoxicity. CSE markedly inhibited IFN-Îł-induced Stat1 phosphorylation, indicating that CSE altered type II interferon signal transduction and providing a mechanism for CSE effects. A period of CSE exposure combined with an interval of epithelial cell exposure to both CSE and IFN-Îł was required to inhibit IFN-Îł-induced cell signaling. CSE also decreased the inhibitory effect of IFN-Îł on RSV mRNA and protein expression, confirming effects on viral infection. CSE effects on IFN-Îł-induced Stat1 activation, antiviral protein expression, and inhibition of RSV infection were decreased by glutathione augmentation of epithelial cells using N-acetylcysteine or glutathione monoethyl ester, providing one strategy to alter cigarette smoke effects.</p> <p>Conclusions</p> <p>The results indicate that CSE inhibits the antiviral effects of IFN-Îł, thereby presenting one explanation for increased susceptibility to respiratory viral infection in individuals exposed to cigarette smoke.</p

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Use of metabolomics for the chemotaxonomy of legume-associated Ascochyta and allied genera

    No full text
    Chemotaxonomy and the comparative analysis of metabolic features of fungi have the potential to provide valuable information relating to ecology and evolution, but have not been fully explored in fungal biology. Here, we investigated the chemical diversity of legume-associated Ascochyta and Phoma species and the possible use of a metabolomics approach using liquid chromatography-mass spectrometry for their classification. The metabolic features of 45 strains including 11 known species isolated from various legumes were extracted, and the datasets were analyzed using chemometrics methods such as principal component and hierarchical clustering analyses. We found a high degree of intra-species consistency in metabolic profiles, but inter-species diversity was high. Molecular phylogenies of the legume-associated Ascochyta/Phoma species were estimated using sequence data from three protein-coding genes and the five major chemical groups that were detected in the hierarchical clustering analysis were mapped to the phylogeny. Clusters based on similarity of metabolic features were largely congruent with the species phylogeny. These results indicated that evolutionarily distinct fungal lineages have diversified their metabolic capacities as they have evolved independently. This whole metabolomics approach may be an effective tool for chemotaxonomy of fungal taxa lacking information on their metabolic content

    Circulating IL-8 levels are increased in patients with type 2 diabetes and associated with worse inflammatory and cardiometabolic profile

    No full text
    AIMS: Interleukin-8 (IL-8) is a chemokine involved in systemic immunity, macrophages infiltration and activation in adipose tissue and may play a significant role in the pathogenesis of type 2 diabetes (T2D) and atherosclerosis. Aims of this study were to evaluate circulating IL-8 levels in adult patients with T2D in comparison with non-diabetic subjects and to describe clinical and biochemical correlates of IL-8 concentration. METHODS: For this cross-sectional study, we enrolled 79 consecutive T2D individuals referring to our diabetes outpatient clinics at Sapienza University of Rome, and 37 sex, age and BMI comparable non-diabetic subjects as a control group. Clinical parameters and medical history were recorded; fasting blood sampling was performed for biochemistry and for measuring serum IL-8, IL-6, TNF-α, CRP, adiponectin and 25(OH)vitamin D [25(OH)D] levels. RESULTS: Patients with T2D exhibited significantly higher serum IL-8 levels than non-diabetic subjects (69.27 ± 112.83 vs. 16.03 ± 24.27 pg/mL, p &lt; 0.001). In diabetic patients, increased IL-8 concentration correlated with higher IL-6 (p &lt; 0.001), TNF-α (p = 0.02), FBG (p = 0.035), HbA1c (p = 0.04) and LDL-C (p = 0.04) and with lower adiponectin (p = 0.02) and 25(OH)D (p = 0.003) concentrations. CONCLUSIONS: Patients with T2D display a marked elevation of circulating IL-8 levels which identify subjects with worse inflammatory, glycometabolic and lipid profile and lower vitamin D levels. Further studies are warranted for evaluating a possible role of IL-8 as a novel marker for risk stratification in T2D patients

    Colony-stimulating factor (CSF) 1 receptor blockade reduces inflammation in human and murine models of rheumatoid arthritis

    No full text
    CSF-1 or IL-34 stimulation of CSF1R promotes macrophage differentiation, activation and osteoclastogenesis, and pharmacological inhibition of CSF1R is beneficial in animal models of arthritis. The objective of this study was to determine the relative contributions of CSF-1 and IL-34 signaling to CSF1R in RA. CSF-1 and IL-34 were detected by immunohistochemical and digital image analysis in synovial tissue from 15 biological-naïve rheumatoid arthritis (RA) , 15 psoriatic arthritis (PsA) and 7 osteoarthritis (OA) patients . Gene expression in CSF-1- and IL-34-differentiated human macrophages was assessed by FACS analysis and quantitative PCR. RA synovial explants were incubated with CSF-1, IL-34, control antibody (Ab), or neutralizing/blocking Abs targeting CSF-1, IL-34, or CSF1R. The effect of a CSF1R-blocking Ab was examined in murine collagen-induced arthritis (CIA). CSF-1 (also known as M-CSF) and IL-34 expression was similar in RA and PsA synovial tissue, but lower in controls (P  < 0.05). CSF-1 expression was observed in the synovial sublining, and IL-34 in the sublining and the intimal lining layer. CSF-1 and IL-34 differentially regulated the expression of 17 of 336 inflammation-associated genes in macrophages, including chemokines, extra-cellular matrix components, and matrix metalloproteinases. Exogenous CSF-1 or IL-34, or their independent neutralization, had no effect on RA synovial explant IL-6 production. Anti-CSF1R Ab significantly reduced IL-6 and other inflammatory mediator production in RA synovial explants, and paw swelling and joint destruction in CIA. Simultaneous inhibition of CSF1R interactions with both CSF-1 and IL-34 suppresses inflammatory activation of RA synovial tissue and pathology in CIA, suggesting a novel therapeutic strategy for R
    corecore