766 research outputs found

    Higher Derivative Fermionic Field Equation in the First Order Formalism

    Full text link
    The generalized Dirac equation of the third order, describing particles with spin 1/2 and three mass states, is analyzed. We obtain the first order generalized Dirac equation in the 24-dimensional matrix form. The mass and spin projection operators are found which extract solutions of the wave equation corresponding to pure spin states of particles. The density of the electromagnetic current is obtained, and minimal and non-minimal (anomalous) electromagnetic interactions of fermions are considered by introducing three phenomenological parameters. The Hamiltonian form of the first order equation has been obtained.Comment: 16 pages, title changed, new section, appendixes, and references adde

    Self-accelerated Universe

    Full text link
    It is widely believed that the large redshifts for distant supernovae are explained by the vacuum energy dominance, or, in other words, by the cosmological constant in Einstein's equations, which is responsible for the anti-gravitation effect. A tacit assumption is that particles move along a geodesic for the background metric. This is in the same spirit as the consensus regarding the uniform Galilean motion of a free electron. However, there is a runaway solution to the Lorentz--Dirac equation governing the behavior of a radiating electron, in addition to the Galilean solution. Likewise, a runaway solution to the entire system of equations, both gravitation and matter equations of motion including, may provide an alternative explanation for the accelerated expansion of the Universe, without recourse to the hypothetic cosmological constant.Comment: 11 pages; Talk at the 9th Adriatic Meeting, Dubrovnic, Croatia, 4-14 September, 2003, Minor improvement, references added; to appear in ``Progress in General Relativity and Quantum Cosmology Research'', Nova Science Publisher

    Variational problem for the Frenkel and the Bargmann-Michel-Telegdi (BMT) equations

    Full text link
    We propose Lagrangian formulation for the particle with value of spin fixed within the classical theory. The Lagrangian turns out to be invariant under non-abelian group of local symmetries. As the gauge-invariant variables for description of spin we can take either the Frenkel tensor or the BMT vector. Fixation of spin within the classical theory implies O(ℏ)O(\hbar)-corrections to the corresponding equations of motion.Comment: 04 pages, notations changed, misprints correcte

    Helicity supersymmetry of dyons

    Full text link
    The 'dyon' system of D'Hoker and Vinet consisting of a spin 1/2 particle with anomalous gyromagnetic ratio 4 in the combined field of a Dirac monopole plus a Coulomb plus a suitable 1/r21/r^2 potential (which arises in the long-range limit of a self-dual monopole) is studied following Biedenharn's approach to the Dirac-Coulomb problem: the explicit solution is obtained using the `Biedenharn-Temple operator', Γ\Gamma, and the extra two-fold degeneracy is explained by the subtle supersymmetry generated by the 'Dyon Helicity' or generalized `Biedenharn-Johnson-Lippmann' operator R{\cal R}. The new SUSY anticommutes with the chiral SUSY discussed previously.Comment: 14 pages, 2 figure

    Little Groups of Preon Branes

    Full text link
    Little groups for preon branes (i.e. configurations of branes with maximal (n-1)/n fraction of survived supersymmetry) for dimensions d=2,3,...,11 are calculated for all massless, and partially for massive orbits. For massless orbits little groups are semidirect product of d-2 translational group Td−2T_{d-2} on a subgroup of (SO(d-2) ×\times R-invariance) group. E.g. at d=9 the subgroup is exceptional G2G_2 group. It is also argued, that 11d Majorana spinor invariants, which distinguish orbits, are actually invariant under d=2+10 Lorentz group. Possible applications of these results include construction of field theories in generalized space-times with brane charges coordinates, different problems of group's representations decompositions, spin-statistics issues.Comment: LaTeX, 11 page

    Canonical and Lie-algebraic twist deformations of Îș\kappa-Poincare and contractions to Îș\kappa-Galilei algebras

    Full text link
    We propose canonical and Lie-algebraic twist deformations of Îș\kappa-deformed Poincare Hopf algebra which leads to the generalized Îș\kappa-Minkowski space-time relations. The corresponding deformed Îș\kappa-Poincare quantum groups are also calculated. Finally, we perform the nonrelativistic contraction limit to the corresponding twisted Galilean algebras and dual Galilean quantum groups.Comment: 16 pages, no figures, v3: few changes provided - version for journal, v2: submitted incidentally, v4: the page numbers for all references in preprint version are provide

    Effective dynamics of an electrically charged string with a current

    Full text link
    Equations of motion for an electrically charged string with a current in an external electromagnetic field with regard to the first correction due to the self-action are derived. It is shown that the reparametrization invariance of the free action of the string imposes constraints on the possible form of the current. The effective equations of motion are obtained for an absolutely elastic charged string in the form of a ring (circle). Equations for the external electromagnetic fields that admit stationary states of such a ring are revealed. Solutions to the effective equations of motion of an absolutely elastic charged ring in the absence of external fields as well as in an external uniform magnetic field are obtained. In the latter case, the frequency at which one can observe radiation emitted by the ring is evaluated. A model of an absolutely nonstretchable charged string with a current is proposed. The effective equations of motion are derived within this model, and a class of solutions to these equations is found.Comment: 14 pages, 3 figures, format changed, minor change

    Unitary dynamics of spherical null gravitating shells

    Full text link
    The dynamics of a thin spherically symmetric shell of zero-rest-mass matter in its own gravitational field is studied. A form of action principle is used that enables the reformulation of the dynamics as motion on a fixed background manifold. A self-adjoint extension of the Hamiltonian is obtained via the group quantization method. Operators of position and of direction of motion are constructed. The shell is shown to avoid the singularity, to bounce and to re-expand to that asymptotic region from which it contracted; the dynamics is, therefore, truly unitary. If a wave packet is sufficiently narrow and/or energetic then an essential part of it can be concentrated under its Schwarzschild radius near the bounce point but no black hole forms. The quantum Schwarzschild horizon is a linear combination of a black and white hole apparent horizons rather than an event horizon.Comment: 26 pages, Latex, no figures; definitive version, to be published in Nuclear Physics

    Klauder's coherent states for the radial Coulomb problem in a uniformly curved space and their flat-space limits

    Full text link
    First a set of coherent states a la Klauder is formally constructed for the Coulomb problem in a curved space of constant curvature. Then the flat-space limit is taken to reduce the set for the radial Coulomb problem to a set of hydrogen atom coherent states corresponding to both the discrete and the continuous portions of the spectrum for a fixed \ell sector.Comment: 10 pages, no figure

    From the Mendeleev periodic table to particle physics and back to the periodic table

    Get PDF
    We briefly describe in this paper the passage from Mendeleev's chemistry (1869) to atomic physics (in the 1900's), nuclear physics (in the 1932's) and particle physics (from 1953 to 2006). We show how the consideration of symmetries, largely used in physics since the end of the 1920's, gave rise to a new format of the periodic table in the 1970's. More specifically, this paper is concerned with the application of the group SO(4,2)xSU(2) to the periodic table of chemical elements. It is shown how the Madelung rule of the atomic shell model can be used for setting up a periodic table that can be further rationalized via the group SO(4,2)xSU(2) and some of its subgroups. Qualitative results are obtained from this nonstandard table.Comment: 15 pages; accepted for publication in Foundations of Chemistry (special issue to commemorate the one hundredth anniversary of the death of Mendeleev who died in 1907); version 2: 16 pages; some sentences added; acknowledgment and references added; misprints correcte
    • 

    corecore