1,686 research outputs found

    Characterizing the Rigidly Rotating Magnetosphere Stars HD 345439 and HD 23478

    Get PDF
    The SDSS III APOGEE survey recently identified two new σ\sigma Ori E type candidates, HD 345439 and HD 23478, which are a rare subset of rapidly rotating massive stars whose large (kGauss) magnetic fields confine circumstellar material around these systems. Our analysis of multi-epoch photometric observations of HD 345439 from the KELT, SuperWASP, and ASAS surveys reveals the presence of a \sim0.7701 day period in each dataset, suggesting the system is amongst the faster known σ\sigma Ori E analogs. We also see clear evidence that the strength of H-alpha, H I Brackett series lines, and He I lines also vary on a \sim0.7701 day period from our analysis of multi-epoch, multi-wavelength spectroscopic monitoring of the system from the APO 3.5m telescope. We trace the evolution of select emission line profiles in the system, and observe coherent line profile variability in both optical and infrared H I lines, as expected for rigidly rotating magnetosphere stars. We also analyze the evolution of the H I Br-11 line strength and line profile in multi-epoch observations of HD 23478 from the SDSS-III APOGEE instrument. The observed periodic behavior is consistent with that recently reported by Sikora and collaborators in optical spectra.Comment: Accepted in ApJ

    Bone mineral density and risk of heart failure in older adults: The Cardiovascular Health Study

    Get PDF
    Background Despite increasing evidence of a common link between bone and heart health, the relationship between bone mineral density ( BMD ) and heart failure ( HF ) risk remains insufficiently studied. Methods and Results We investigated whether BMD measured by dual‐energy x‐ray absorptiometry was associated with incident HF in an older cohort. Cox models were stratified by sex and interactions of BMD with race assessed. BMD was examined at the total hip and femoral neck separately, both continuously and by World Health Organization categories. Of 1250 participants, 442 (55% women) developed HF during the median follow‐up of 10.5 years. In both black and nonblack women, neither total hip nor femoral neck BMD was significantly associated with HF ; there was no significant interaction by race. In black and nonblack men, total hip, but not femoral neck, BMD was significantly associated with HF , with evidence of an interaction by race. In nonblack men, lower total hip BMD was associated with higher HF risk (hazard ratio, 1.13 [95% CI, 1.01–1.26] per 0.1 g/cm 2 decrement), whereas in black men, lower total hip BMD was associated with lower HF risk (hazard ratio, 0.74 [95% CI, 0.59–0.94]). There were no black men with total hip osteoporosis. Among nonblack men, total hip osteoporosis was associated with higher HF risk (hazard ratio, 2.83 [95% CI, 1.39–5.74]) compared with normal BMD . Conclusions Among older adults, lower total hip BMD was associated with higher HF risk in nonblack men but lower risk in black men, with no evidence of an association in women. Further research is needed to replicate these findings and to study potential underlying pathways. </jats:sec

    Phenomenological study of hadron interaction models

    Get PDF
    We present a phenomenological study of three models with different effective degrees of freedom: a Goldstone Boson Exchange (GBE) model which is based on quark-meson couplings, the quark delocalization, color screening model (QDCSM) which is based on quark-gluon couplings with delocalized quark wavefunctions, and the Fujiwara-Nijmegen (FN) mixed model which includes both quark-meson and quark-gluon couplings. We find that for roughly two-thirds of 64 states consisting of pairs of octet and decuplet baryons, the three models predict similar effective baryon-baryon interactions. This suggests that the three very different models, based on different effective degrees of freedom, are nonetheless all compatible with respect to baryon spectra and baryon-baryon interactions. We also discuss the differences between the three models and their separate characteristics.Comment: 30 pages latex, 7 tables, 12 figs; submitted to Phys. Rev.

    Using landscape topology to compare continuous metaheuristics: a framework and case study on EDAs and ridge structure

    Get PDF
    In this paper we extend a previously proposed randomized landscape generator in combination with a comparative experimental methodology to study the behavior of continuous metaheuristic optimization algorithms. In particular, we generate twodimensional landscapes with parameterized, linear ridge structure, and perform pairwise comparisons of algorithms to gain insight into what kind of problems are easy and difficult for one algorithm instance relative to another.We apply thismethodology to investigate the specific issue of explicit dependency modeling in simple continuous estimation of distribution algorithms. Experimental results reveal specific examples of landscapes (with certain identifiable features) where dependency modeling is useful, harmful, or has little impact on mean algorithm performance. Heat maps are used to compare algorithm performance over a large number of landscape instances and algorithm trials. Finally, we perform ameta-search in the landscape parameter space to find landscapes which maximize the performance between algorithms. The results are related to some previous intuition about the behavior of these algorithms, but at the same time lead to new insights into the relationship between dependency modeling in EDAs and the structure of the problem landscape. The landscape generator and overall methodology are quite general and extendable and can be used to examine specific features of other algorithms

    Size of the Vela Pulsar's Emission Region at 13 cm Wavelength

    Get PDF
    We present measurements of the size of the Vela pulsar in 3 gates across the pulse, from observations of the distribution of intensity. We calculate the effects on this distribution of noise in the observing system, and measure and remove it using observations of a strong continuum source. We also calculate and remove the expected effects of averaging in time and frequency. We find that effects of variations in pulsar flux density and instrumental gain, self-noise, and one-bit digitization are undetectably small. Effects of normalization of the correlation are detectable, but do not affect the fitted size. The size of the pulsar declines from 440 +/- 90 km (FWHM of best-fitting Gaussian distribution) to less than 200 km across the pulse. We discuss implications of this size for theories of pulsar emission.Comment: 51 pages, 10 figures. To appear in ApJ. Also available at http://www.physics.ucsb.edu/~cgwinn/pulsar/size_14.p
    corecore