29 research outputs found
Abdominal aortic calcification: from ancient friend to modern foe
BACKGROUND: Abdominal aortic calcifications were already ubiquitous in ancient populations from all continents. Although nowadays generally considered as an innocent end stage of stabilised atherosclerotic plaques, increasing evidence suggests that arterial calcifications contribute to cardiovascular risk. In this review we address abdominal aortic calcification from an evolutionary perspective and review the literature on histology, prevalence, risk factors, clinical outcomes and pharmacological interventions of abdominal aortic calcification. DESIGN: The design of this study was based on a literature review. METHODS: Pubmed and Embase were systematically searched for articles on abdominal aortic calcification and its synonyms without language restrictions. Articles with data on histology, prevalence, risk factors clinical outcomes and/or pharmacological interventions were selected. RESULTS: Abdominal aortic calcification is highly prevalent in the general population and prevalence and extent increase with age. Prevalence and risk factors differ between males and females and different ethnicities. Risk factors include traditional cardiovascular risk factors and decreased bone mineral density. Abdominal aortic calcification is shown to contribute to arterial stiffness and is a strong predictor of cardiovascular events and mortality. Several therapies to inhibit arterial calcification have been developed and investigated in small clinical trials. CONCLUSIONS: Abdominal aortic calcification is from all eras and increasingly acknowledged as an independent contributor to cardiovascular disease. Large studies with long follow-up must be carried out to show whether inhibition of abdominal aortic calcification will further reduce cardiovascular risk
Do pseudoxanthoma elasticum patients have higher prevalence of kidney stones on computed tomography compared to hospital controls?
Background: Pseudoxanthoma elasticum (PXE) is an autosomal recessive disease characterized by diminished inorganic plasma pyrophosphate (PPi), a strong calcification inhibitor. In addition to more typical calcification of skin, retina and arterial wall a diminished plasma PPi could lead to other ectopic calcification, such as formation of kidney stones. Objective: To compare the prevalence of kidney stones between PXE patients and hospital controls on computed tomography (CT). Method: Low-dose CT images of PXE patients and controls were assessed by one radiologist, who was blinded for the diagnosis PXE. The number of kidney stones, and the size of the largest stone was recorded. Odds ratios (ORs) for having kidney stone were calculated using multivariable adjusted logistic regression. Results: Our study comprised 273 PXE patients and 125 controls. The mean age of PXE patients was 51.5 ± 15.9 years compared to 54.9 ± 14.2 in the control group (p = 0.04) and PXE patients more often were women (63 vs. 50%, p = 0.013). The prevalence of kidney stones on CT was similar: 6.9% in PXE patients, compared to 5.6% in controls (p = 0.6). In the multivariate analysis adjusting for age and sex, there was no significantly higher odds for PXE patients on having stones, compared to controls: OR 1.48 (95% CI 0.62–3.96). Conclusion: There is no significant difference in the prevalence of incidental kidney stones on CT in PXE patients versus controls
Osteoarthritis in Pseudoxanthoma Elasticum Patients: An Explorative Imaging Study
Pseudoxanthoma elasticum (PXE) is a systemic disease affecting the skin, eyes, and cardiovascular system of patients. Cardiovascular disease is associated with osteoarthritis (OA), which is the most common cause of joint pain. There is a lack of systematic investigations on joint manifestations in PXE in the literature. In this explorative study, we aimed to investigate whether patients with PXE are more at risk for developing osseous signs of OA. Patients with PXE and hospital controls with whole-body low-dose CT examinations available were included. OA was assessed using the OsteoArthritis Computed Tomography (OACT)-score, which is a 4-point Likert scale, in the acromioclavicular (AC), glenohumeral (GH), facet, hip, knee, and ankle joints. Additionally, intervertebral disc degeneration was scored. Data were analyzed using ordinal logistic regression adjusted for age, body mass index (BMI), and smoking status. In total, 106 PXE patients (age 56 (48-64), 42% males, BMI 25.3 (22.7-28.2)) and 87 hospital controls (age 55 (43-67), 46% males, BMI 26.0 (22.5-29.2)) were included. PXE patients were more likely to have a higher OA score for the AC joints (OR 2.00 (1.12-3.61)), tibiofemoral joint (OR 2.63 (1.40-5.07)), and patellofemoral joint (2.22 (1.18-4.24)). For the other joints, the prevalence and severity of OA did not differ significantly. This study suggests that patients with PXE are more likely to have structural OA of the knee and AC joints, which needs clinical confirmation in larger groups and further investigation into the mechanism
Vascular uptake on 18F-sodium fluoride positron emission tomography:precursor of vascular calcification?
Background: Microcalcifications cannot be identified with the present resolution of CT; however, 18F-sodium fluoride (18F-NaF) positron emission tomography (PET) imaging has been proposed for non-invasive identification of microcalcification. The primary objective of this study was to assess whether 18F-NaF activity can assess the presence and predict the progression of CT detectable vascular calcification. Methods and Results: The data of two longitudinal studies in which patients received a 18F-NaF PET-CT at baseline and after 6 months or 1-year follow-up were used. The target to background ratio (TBR) was measured on PET at baseline and CT calcification was quantified in the femoral arteries at baseline and follow-up. 128 patients were included. A higher TBR at baseline was associated with higher calcification mass at baseline and calcification progression (β = 1.006 [1.005-1.007] and β = 1.002 [1.002-1.003] in the studies with 6 months and 1-year follow-up, respectively). In areas without calcification at baseline and where calcification developed at follow-up, the TBR was.11–.13 (P < .001) higher compared to areas where no calcification developed. Conclusion: The activity of 18F-NaF is related to the amount of calcification and calcification progression. In areas where calcification formation occurred, the TBR was slightly but significantly higher
Increased Elastin Degradation in Pseudoxanthoma Elasticum Is Associated with Peripheral Arterial Disease Independent of Calcification
Pseudoxanthoma elasticum (PXE) results in extensive fragmentation and calcification of elastin fibers in the peripheral arteries, which results in peripheral arterial disease (PAD). Current research focuses on the role of calcifications in the pathogenesis of PXE. Elastin degradation and calcification are shown to interact and may amplify each other. This study aims to compare plasma desmosines, a measure of elastin degradation, between PXE patients and controls and to investigate the association between desmosines and (1) arterial calcification, (2) PAD, and (3) PAD independent of arterial calcification in PXE. Plasma desmosines were quantified with liquid chromatography-tandem mass spectrometry in 93 PXE patients and 72 controls. In PXE patients, arterial calcification mass was quantified on CT scans. The ankle brachial index (ABI) after treadmill test was used to analyze PAD, defined as ABI < 0.9, and the Fontaine classification was used to distinguish symptomatic and asymptomatic PAD. Regression models were built to test the association between desmosines and arterial calcification and arterial functioning in PXE. PXE patients had higher desmosines than controls (350 (290-410) ng/L vs. 320 (280-360) ng/L, p = 0.02). After adjustment for age, sex, body mass index, smoking, type 2 diabetes mellitus, and pulmonary abnormalities, desmosines were associated with worse ABI (β (95%CI): -68 (-132; -3) ng/L), more PAD (β (95%CI): 40 (7; 73) ng/L), and higher Fontaine classification (β (95%CI): 30 (6; 53) ng/L), but not with arterial calcification mass. Lower ABI was associated with higher desmosines, independent from arterial calcification mass (β (95%CI): -0.71(-1.39; -0.01)). Elastin degradation is accelerated in PXE patients compared to controls. The association between desmosines and ABI emphasizes the role of elastin degradation in PAD in PXE. Our results suggest that both elastin degradation and arterial calcification independently contribute to PAD in PXE
Determinants of F-18-NaF uptake in femoral arteries in patients with type 2 diabetes mellitus
BACKGROUND: The goal of this study was to investigate the potential determinants of 18F-NaF uptake in femoral arteries as a marker of arterial calcification in patients with type 2 diabetes and a history of arterial disease. METHODS AND RESULTS: The study consisted of participants of a randomized controlled trial to investigate the effect of vitamin K2 (NCT02839044). In this prespecified analysis, subjects with type 2 diabetes and known arterial disease underwent full body 18F-NaF PET/CT. Target-to-background ratio (TBR) was calculated by dividing the mean SUVmax from both superficial femoral arteries by the SUVmean in the superior vena cava (SVC) and calcium mass was measured on CT. The association between 18F-NaF TBR and cardiovascular risk factors was investigated using uni- and multivariate linear regression corrected for age and sex. In total, 68 patients (mean age: 69 ± 8 years; male: 52) underwent 18F-NaF PET/CT. Higher CT calcium mass, total cholesterol, and HbA1c were associated with higher 18F-NaF TBR after adjusting. CONCLUSION: This study shows that several modifiable cardiovascular risk factors (total cholesterol, triglycerides, HbA1c) are associated with femoral 18F-NaF tracer uptake in patients with type 2 diabetes
Genotype-phenotype correlation in pseudoxanthoma elasticum
Background and aims: Pseudoxanthoma elasticum (PXE) is caused by variants in the ABCC6 gene. It results in calcification in the skin, peripheral arteries and the eyes, but has considerable phenotypic variability. We investigated the association between the ABCC6 genotype and calcification and clinical phenotypes in these different organs.
Methods: ABCC6 sequencing was performed in 289 PXE patients. Genotypes were grouped as two truncating, mixed, or two non-truncating variants. Arterial calcification mass was quantified on whole body, low dose CT scans; and peripheral arterial disease was measured with the ankle brachial index after treadmill test. The presence of pseudoxanthoma in the skin was systematically scored. Ophthalmological phenotypes were the length of angioid streaks as a measure of Bruchs membrane calcification, the presence of choroidal neovascularizations, severity of macular atrophy and visual acuity. Regression models were built to test the age and sex adjusted genotype-phenotype association.
Results: 158 patients (median age 51 years) had two truncating variants, 96 (median age 54 years) a mixed genotype, 18 (median age 47 years) had two non-truncating variants. The mixed genotype was associated with lower peripheral (13: 0.39, 95%CI:-0.62;-0.17) and total (13: 0.28, 95%CI:-0.47;-0.10) arterial calcification mass scores, and lower prevalence of choroidal neovascularizations (OR: 0.41 95%CI:0.20; 0.83) compared to two truncating variants. No association with pseudoxanthomas was found. Conclusions: PXE patients with a mixed genotype have less severe arterial and ophthalmological phenotypes than patients with two truncating variants in the ABCC6 gene. Research into environmental and genetic modifiers might provide further insights into the unexplained phenotypic variability
Intracranial atherosclerosis in pseudoxanthoma elasticum: A case-control study
BACKGROUND AND AIMS: Pseudoxanthoma elasticum (PXE) is a genetic disorder characterized by systemic calcification of elastin fibers. Additionally, PXE is associated with an increased risk of stroke. It has been hypothesized that this may be caused by accelerated (intracranial) atherogenesis, as a consequence of specific genetic mutations underlying PXE. Hence, we compared the distribution and burden of intracranial atherosclerosis between PXE patients and healthy controls. METHODS: Fifty PXE patients and 40 age-and-sex-matched healthy controls (without previous ischemic cerebrovascular disease) underwent 3T MRI to visualize atherosclerotic intracranial vessel wall lesions (VWLs). We compared the presence and burden of VWLs (total and for the anterior cerebral, middle cerebral, intracranial internal carotid, posterior cerebral, and basilar arteries separately) between PXE patients and healthy controls using logistic (presence versus absence) and negative binomial regression models (VWL count) adjusted for relevant confounders. All regressions included group (PXE patients vs. healthy controls) as independent variable. RESULTS: We found that 34 (68.0%) PXE patients and 28 (70.0%) healthy controls had a VWL (odds ratio for presence 1.06 [95%CI 0.38-2.91]). In addition, the total burden of VWLs was similar between PXE patients (68 VWLs) and healthy controls (73 VWLs, incidence rate ratio for count 0.81 [95%CI 0.55-1.20]). Findings were similar when analyses were stratified for artery. CONCLUSIONS: The distribution and burden of intracranial atherosclerosis were similar between PXE patients and healthy controls. This implies PXE and its underlying mutations do not involve increased (intracranial) atherogenesis and that vascular calcification or other mechanisms explains the increased stroke risk in PXE
Plasma Level of Pyrophosphate Is Low in Pseudoxanthoma Elasticum Owing to Mutations in the ABCC6 Gene, but It Does Not Correlate with ABCC6 Genotype
BACKGROUND: Pseudoxanthoma elasticum (PXE), a monogenic disorder resulting in calcification affecting the skin, eyes and peripheral arteries, is caused by mutations in the ABCC6 gene, and is associated with low plasma inorganic pyrophosphate (PP i). It is unknown how ABCC6 genotype affects plasma PP i. METHODS: We studied the association of ABCC6 genotype (192 patients with biallelic pathogenic ABCC6 mutations) and PP i levels, and its association with the severity of arterial and ophthalmological phenotypes. ABCC6 variants were classified as truncating or non-truncating, and three groups of the 192 patients were formed: those with truncating mutations on both chromosomes ( n = 121), those with two non-truncating mutations ( n = 10), and a group who had one truncating and one non-truncating ABCC6 mutation ( n = 61). The hypothesis formulated before this study was that there was a negative association between PP i level and disease severity. RESULTS: Our findings confirm low PP i in PXE compared with healthy controls (0.53 ± 0.15 vs. 1.13 ± 0.29 µM, p < 0.01). The PP i of patients correlated with increasing age (β: 0.05 µM, 95% CI: 0.03-0.06 per 10 years) and was higher in females (0.55 ± 0.17 vs. 0.51 ± 0.13 µM in males, p = 0.03). However, no association between PP i and PXE phenotypes was found. When adjusted for age and sex, no association between PP i and ABCC6 genotype was found. CONCLUSIONS: Our data suggest that the relationship between ABCC6 mutations and reduced plasma PP i may not be as direct as previously thought. PP i levels varied widely, even in patients with the same ABCC6 mutations, further suggesting a lack of direct correlation between them, even though the ABCC6 protein-mediated pathway is responsible for ~60% of this metabolite in the circulation. We discuss potential factors that may perturb the expected associations between ABCC6 genotype and PP i and between PP i and disease severity. Our findings support the argument that predictions of pathogenicity made on the basis of mutations (or on the structure of the mutated protein) could be misleading