3 research outputs found
Growth and characterization of electrodeposited Cu2O thin films
This work demonstrates the electrodeposition of cuprous oxide (Cu2O) thin films onto a fluorine-doped tin oxide (FTO)-coated conducting glass substrates from Cu(II) sulfate solution with C6H8O7 chelating agent. During cyclic voltammetry experiences, the potential interval where the electrodeposition of Cu2O is carried out was established. The thin films were obtained potentiostatically and were characterized through different techniques. From the Mott-Schottky measurements, the flat-band potential and the acceptor density for the Cu2O thin films are determined. All the films showed a p-type semiconductor character with a carrier density varying between 2.41 x 10(18) cm(-3) and 5.38 x 10(18) cm(-3). This little difference is attributed to the increase of the stoichiometric defects in the films with the deposition potential. Atomic force microscopy analysis showed that the Cu2O thin films obtained at high potential are more homogenous in appearance and present lower crystallites size. X-ray diffraction measurements indicate a cubic structure with good crystallization state and the deposition potential was found to have an influence on the size of the crystallites. The optical measurements show a direct band gap between 2.07-2.49 eV depending on the applied potential