18,870 research outputs found

    Modelling and evaluation of pulsed and pulse phase thermography through application of composite and metallic case studies

    No full text
    A transient thermal finite element model has been created of the pulsed thermography (PT) and pulse phase thermography (PPT) experimental procedure. The model has been experimentally validated through the application of four case studies of varying geometries and materials. Materials used include aluminium, carbon fibre reinforced plastic (CFRP) and adhesively bonded joints. The same four case studies have also formed a basis for comparison between three experimental techniques: PT, PPT and the more established ultrasonic (UT) c-scan.Results show PPT to be advantageous over PT due to its deeper probing as it is less influenced by surface features. Whilst UT is able to reveal all the defects in these case studies, the time consuming nature of the process is a significant disadvantage compared to the full field thermography methods.Overall, the model has achieved good correlation for the case studies considered and it was found that the main limiting factor of the PT model accuracy was knowledge of thermal material properties such as conductivity and specific heat. Where these properties were accurately known the model performed very well in comparison with experimental results. PPT modelling performed less well due to the method of processing the PT data which aims to emphasise small differences. Hence inaccuracies in inputted values such as material properties have a much greater influence on the modelled PPT data. The model enables a better understanding of PT and PPT and provides a means of establishing the experimental set-up parameters required for different components, allowing the experimental technique to be appropriately tailored to more complex situations including bonded joints or structures where several materials are present.The paper ends with a section on defect detectability based on thermal diffusivity contrast between the defect and the bulk material. It shows that in aluminium, because of its higher conductivity, greater thermal contrast is achieved for small differences in diffusivity. Regions where the diffusivity ratio between defect and bulk materials was insufficient to provide thermal contrast for defect identification were found. PPT phase data is shown to reduce the extent of such regions increasing the detectability of defects. Effusivity is introduced as a means of determining the thermal contrast between the defect and non-defective areas and hence establishing the defect detectability

    Conceptual design of the 6 MW Mod-5A wind turbine generator

    Get PDF
    The General Electric Company, Advanced Energy Programs Department, is designing under DOE/NASA sponsorship the MOD-5A wind turbine system which must generate electricity for 3.75 cent/KWH (1980) or less. During the Conceptual Design Phase, completed in March, 1981, the MOD-5A WTG system size and features were established as a result of tradeoff and optimization studies driven by minimizing the system cost of energy (COE). This led to a 400' rotor diameter size. The MOD-5A system which resulted is defined in this paper along with the operational and environmental factors that drive various portions of the design. Development of weight and cost estimating relationships (WCER's) and their use in optimizing the MOD-5A are discussed. The results of major tradeoff studies are also presented. Subsystem COE contributions for the 100th unit are shown along with the method of computation. Detailed descriptions of the major subsystems are given, in order that the results of the various trade and optimization studies can be more readily visualized

    Future mobile satellite communication concepts at 20/30 GHz

    Get PDF
    The outline of a design of a system using ultra small earth stations (picoterminals) for data traffic at 20/30 GHz is discussed. The picoterminals would be battery powered, have an RF transmitter power of 0.5 W, use a 10 cm square patch antenna, and have a receiver G/T of about -8 dB/K. Spread spectrum modulation would be required (due to interference consideration) to allow a telex type data link (less than 200 bit/s data rate) from the picoterminal to the hub station of the network and about 40 kbit/s on the outbound patch. An Olympus type transponder at 20/30 GHz could maintain several thousand simultaneous picoterminal circuits. The possibility of demonstrating a picoterminal network with voice traffic using Olympus is discussed together with fully mobile systems based on this concept

    A small helium liquifier which provides continuous cooling based on cycled isentropic expansion

    Get PDF
    This simple cryocooler provides a small reservoir of liquid helium at a stable temperature of 4.2K. It uses a novel adaptation of the Simon expansion cryocooler to provide continuous cooling. Operation is in a four stage cycle: (1) A closed vessel of helium under high pressure is cooled to 12K using a conventional Gifford-McMahon closed-cycle cryocooler. (2) The pressure is released adiabatically providing cooling to 4.2K. (3) Liquid helium is collected in a second, well insulated, vessel. (4) The first vessel is repressurized. The cycle time is 15-30 minutes. In this manner, a pool of liquid helium is continuously maintained in the second vessel, with a temperature stability of 0.03 degrees. The continuous cooling power available is 3mW. This design provides simplicity and reliability through the absence of any orifices or moving parts at cryogenic temperatures except for the conventional Gifford-McMahon cryocooler

    Casimir-Polder forces, boundary conditions and fluctuations

    Full text link
    We review different aspects of the atom-atom and atom-wall Casimir-Polder forces. We first discuss the role of a boundary condition on the interatomic Casimir-Polder potential between two ground-state atoms, and give a physically transparent interpretation of the results in terms of vacuum fluctuations and image atomic dipoles. We then discuss the known atom-wall Casimir-Polder force for ground- and excited-state atoms, using a different method which is also suited for extension to time-dependent situations. Finally, we consider the fluctuation of the Casimir-Polder force between a ground-state atom and a conducting wall, and discuss possible observation of this force fluctuation.Comment: 5 page

    Large Pseudo-Counts and L2L_2-Norm Penalties Are Necessary for the Mean-Field Inference of Ising and Potts Models

    Full text link
    Mean field (MF) approximation offers a simple, fast way to infer direct interactions between elements in a network of correlated variables, a common, computationally challenging problem with practical applications in fields ranging from physics and biology to the social sciences. However, MF methods achieve their best performance with strong regularization, well beyond Bayesian expectations, an empirical fact that is poorly understood. In this work, we study the influence of pseudo-count and L2L_2-norm regularization schemes on the quality of inferred Ising or Potts interaction networks from correlation data within the MF approximation. We argue, based on the analysis of small systems, that the optimal value of the regularization strength remains finite even if the sampling noise tends to zero, in order to correct for systematic biases introduced by the MF approximation. Our claim is corroborated by extensive numerical studies of diverse model systems and by the analytical study of the mm-component spin model, for large but finite mm. Additionally we find that pseudo-count regularization is robust against sampling noise, and often outperforms L2L_2-norm regularization, particularly when the underlying network of interactions is strongly heterogeneous. Much better performances are generally obtained for the Ising model than for the Potts model, for which only couplings incoming onto medium-frequency symbols are reliably inferred.Comment: 25 pages, 17 figure

    Experience and Assessment of the DOE/NASA Mod-1 2000 Kw Wind Turbine Generator at Boone, North Carolina

    Get PDF
    The Mod 1 program objectives are defined. The Mod 1 wind turbine is described. In addition to the steel blade operated on the wind turbine, a composite blade was designed and manufactured. During the early phase of the manufacturing cycle of Mod 1A configuration was designed that identified concepts such as partial span control, a soft tower, and upwind teetered rotors that were incorporated in second and third generation industry designs. The Mod 1 electrical system performed as designed, with voltage flicker characteristics within acceptable utility limits

    A review of residual stress analysis using thermoelastic techniques

    No full text
    Thermoelastic Stress Analysis (TSA) is a full-field technique for experimental stress analysis that is based on infra-red thermography. The technique has proved to be extremely effective for studying elastic stress fields and is now well established. It is based on the measurement of the temperature change that occurs as a result of a stress change. As residual stress is essentially a mean stress it is accepted that the linear form of the TSA relationship cannot be used to evaluate residual stresses. However, there are situations where this linear relationship is not valid or departures in material properties due to manufacturing procedures have enabled evaluations of residual stresses. The purpose of this paper is to review the current status of using a TSA based approach for the evaluation of residual stresses and to provide some examples of where promising results have been obtained

    Elliptic Flow, Initial Eccentricity and Elliptic Flow fluctuations in Heavy Ion Collisions at RHIC

    Get PDF
    We present measurements of elliptic flow and event-by-event fluctuations established by the PHOBOS experiment. Elliptic flow scaled by participant eccentricity is found to be similar for both systems when collisions with the same number of participants or the same particle area density are compared. The agreement of elliptic flow between Au+Au and Cu+Cu collisions provides evidence that the matter is created in the initial stage of relativistic heavy ion collisions with transverse granularity similar to that of the participant nucleons. The event-by-event fluctuation results reveal that the initial collision geometry is translated into the final state azimuthal particle distribution, leading to an event-by-event proportionality between the observed elliptic flow and initial eccentricity.Comment: To appear in the proceedings of the Lake Louise Winter Institute 2007. The proceedings of the institute will be published by World Scientifi
    • …
    corecore