1,739 research outputs found
A local field emission study of partially aligned carbon-nanotubes by AFM probe
We report on the application of Atomic Force Microscopy (AFM) for studying
the Field Emission (FE) properties of a dense array of long and vertically
quasi-aligned multi-walled carbon nanotubes grown by catalytic Chemical Vapor
Deposition on a silicon substrate. The use of nanometric probes enables local
field emission measurements allowing investigation of effects non detectable
with a conventional parallel plate setup, where the emission current is
averaged on a large sample area. The micrometric inter-electrode distance let
achieve high electric fields with a modest voltage source. Those features
allowed us to characterize field emission for macroscopic electric fields up to
250 V/m and attain current densities larger than 10 A/cm. FE
behaviour is analyzed in the framework of the Fowler-Nordheim theory. A field
enhancement factor 40-50 and a turn-on field 15 V/m at an inter-electrode distance of 1 m are estimated.
Current saturation observed at high voltages in the I-V characteristics is
explained in terms of a series resistance of the order of M. Additional
effects as electrical conditioning, CNT degradation, response to laser
irradiation and time stability are investigated and discussed
A Simple Model for the Absorption of Starlight by Dust in Galaxies
We present a new model to compute the effects of dust on the integrated
spectral properties of galaxies, based on an idealized prescription of the main
features of the interstellar medium (ISM). The model includes the ionization of
HII regions in the interiors of the dense clouds in which stars form and the
influence of the finite lifetime of these clouds on the absorption of
radiation. We compute the production of emission lines and the absorption of
continuum radiation in the HII regions and the subsequent transfer of line and
continuum radiation in the surrounding HI regions and the ambient ISM. This
enables us to interpret simultaneously all the observations of a homogeneous
sample of nearby UV-selected starburst galaxies, including the ratio of far-IR
to UV luminosities, the ratio of Halpha to Hbeta luminosities, the Halpha
equivalent width, and the UV spectral slope. We show that the finite lifetime
of stellar birth clouds is a key ingredient to resolve an apparent discrepancy
between the attenuation of line and continuum photons in starburst galaxies. In
addition, we find that an effective absorption curve proportional to
lambda^-0.7 reproduces the observed relation between the ratio of far-IR to UV
luminosities and the UV spectral slope. We interpret this relation most simply
as a sequence in the overall dust content of the galaxies. The shallow
wavelength dependence of the effective absorption curve is compatible with the
steepness of known extinction curves if the dust has a patchy distribution. In
particular, we find that a random distribution of discrete clouds with optical
depths similar to those in the Milky Way provides a consistent interpretation
of all the observations. Our model for absorption can be incorporated easily
into any population synthesis model. (abridged)Comment: To appear in the 2000 July 20 issue of the Astrophysical Journal; 19
pages with 13 embedded PS figures (emulateapj5.sty
Quantum phases in entropic dynamics
In the Entropic Dynamics framework the dynamics is driven by maximizing
entropy subject to appropriate constraints. In this work we bring Entropic
Dynamics one step closer to full equivalence with quantum theory by identifying
constraints that lead to wave functions that remain single-valued even for
multi-valued phases by recognizing the intimate relation between quantum
phases, gauge symmetry, and charge quantization.Comment: Presented at MaxEnt 2017, the 37th International Workshop on Bayesian
Inference and Maximum Entropy Methods in Science and Engineering (July 9-14,
2017, Jarinu, Brazil
Field emission from single multi-wall carbon nanotubes
Electron field emission characteristics of individual multiwalled carbon
nanotubes have been investigated by a piezoelectric nanomanipulation system
operating inside a scanning electron microscopy chamber. The experimental setup
ensures a high control capability on the geometric parameters of the field
emission system (CNT length, diameter and anode-cathode distance). For several
multiwalled carbon nanotubes, reproducible and quite stable emission current
behaviour has been obtained with a dependence on the applied voltage well
described by a series resistance modified Fowler-Nordheim model. A turn-on
field of about 30 V/um and a field enhancement factor of around 100 at a
cathode-anode distance of the order of 1 um have been evaluated. Finally, the
effect of selective electron beam irradiation on the nanotube field emission
capabilities has been extensively investigated.Comment: 16 pages, 5 figure
Status of Salerno Laboratory (Measurements in Nuclear Emulsion)
A report on the analysis work in the Salerno Emulsion Laboratory is
presented. It is related to the search for nu_mu->nu_tau oscillations in CHORUS
experiment, the calibrations in the WANF (West Area Neutrino Facility) at Cern
and tests and preparation for new experiments.Comment: Proc. The First International Workshop of Nuclear Emulsion Techniques
(12-24 June 1998, Nagoya, Japan), 15 pages, 11 figure
Out-of-plane seismic response of masonry façades using discrete macro-element and rigid block models
This paper investigates the out-of-plane response of masonry façades under earthquakes by means of two different approaches. A discrete macro-element approach, based on modelling the structure by means of spatial deformable macro-elements interacting through nonlinear zero-thickness interfaces, and the classical approach in which the masonry façade is assumed as a rigid block subjected to earthquake loading. The latter method neglects the elasticity of the masonry element and contemplates the energy dissipation only at each impact by means of a coefficient of restitution. The results of dynamic non-linear analyses, performed with the two methods on a real case of a church façade, provide a first comparison between the two ap-proaches highlighting some limits of application of the simplified rigid block model
- …