4 research outputs found

    Functional independence of the protein translocation machineries in mitochondrial outer and inner membranes

    Get PDF
    The protein translocation machineries of the outer and inner mitochondrial membranes usually act in concert during translocation of matrix and inner membrane proteins. We considered whether the two machineries can function independently of each other in a sequential reaction. Fusion proteins (pF-CCHL) were constructed which contained dual targeting information, one for the intermembrane space present in cytochrome c heme lyase (CCHL) and the other for the matrix space contained in the signal sequence of the precursor of F1-ATPase beta-subunit (pF1 beta). In the absence of a membrane potential, delta psi, the fusion proteins moved into the intermembrane space using the CCHL pathway. In contrast, in the presence of delta psi they followed the pF1 beta pathway and eventually were translocated into the matrix. The fusion protein pF51-CCHL containing 51 amino acids of pF1 beta, once transported into the intermembrane space in the absence of a membrane potential, could be further chased into the matrix upon re-establishing delta psi. The sequential and independent movement of the fusion protein across the two membranes demonstrates that the translocation machineries act as distinct entities. Our results support a model in which the two translocation machineries can function independently of each other, but generally interact in a dynamic fashion to achieve simultaneous translocation across both membranes. In addition, the results provide information about the targeting sequences within CCHL. The protein does not contain a signal for retention in the intermembrane space; rather, it lacks matrix targeting information, and therefore is unable to undergo delta psi-dependent interaction with the protein translocation apparatus in the inner membrane

    Transport of proteins into the various subcompartments of mitochondria

    Get PDF
    The import of proteins into mitochondria is an intricate process comprised of multiple steps. The first step involves the sorting of cytosolically synthesized precursor proteins to the mitochondrial surface. There precursor proteins are recognized by specific receptors which deliver them to the general import site present in the outer membrane. The second stage of import involves a series of complex intraorganelle sorting events which results in the delivery of the proteins to one of the four possible submitochondrial destinations, namely the outer and inner membranes, the matrix and intermembrane space. Here in this review, we discuss the current knowledge on these intramitochondrial sorting events. We especially focus on targetting of proteins to the intermembrane space. Sorting to the intermembrane space represents a particularly interesting situation, as at least three separate targetting pathways to this subcompartment are known to exist

    The human genome contains a pseudogene for the M r

    No full text
    corecore