113 research outputs found

    Genomic, transcriptomic and RNA editing analysis of human MM1 and VV2 sporadic Creutzfeldt-Jakob disease

    Get PDF
    Creutzfeldt-Jakob disease (CJD) is characterized by a broad phenotypic spectrum regarding symptoms, progression, and molecular features. Current sporadic CJD (sCJD) classification recognizes six main clinical-pathological phenotypes. This work investigates the molecular basis of the phenotypic heterogeneity of prion diseases through a multiomics analysis of the two most common sCJD subtypes: MM1 and VV2. We performed DNA target sequencing on 118 genes on a cohort of 48 CJD patients and full exome RNA sequencing on post-mortem frontal cortex tissue on a subset of this cohort. DNA target sequencing identified multiple potential genetic contributors to the disease onset and phenotype, both in terms of coding, damaging-predicted variants, and enriched groups of SNPs in the whole cohort and the two subtypes. The results highlight a different functional impairment, with VV2 associated with higher impairment of the pathways related to dopamine secretion, regulation of calcium release and GABA signaling, showing some similarities with Parkinson’s disease both on a genomic and a transcriptomic level. MM1 showed a gene expression profile with several traits shared with different neurodegenerative, without an apparent distinctive characteristic or similarities with a specific disease. In addition, integrating genomic and transcriptomic data led to the discovery of several sites of ADAR-mediated RNA editing events, confirming and expanding previous findings in animal models. On the transcriptomic level, this work represents the first application of RNA sequencing on CJD human brain samples. Here, a good clusterization of the transcriptomic profiles of the two subtypes was achieved, together with the finding of several differently impaired pathways between the two subtypes. The results add to the understanding of the molecular features associated with sporadic CJD and its most common subtypes, revealing strain-specific genetic signatures and functional similarities between VV2 and Parkinson’s disease and providing preliminary evidence of RNA editing modifications in human sCJD

    Identification of recurrent genetic patterns from targeted sequencing panels with advanced data science: a case-study on sporadic and genetic neurodegenerative diseases

    Get PDF
    open8noThis work is funded by the University of Bologna, the IRCCS Institute of Neurological sciences of Bologna, and by the European Grants H2020 GenoMed4All [AM1] (Grant N. 101017549) and H2020 MSCA-ITN IMforFUTURE (Grant N. 721815).Background Targeted Next Generation Sequencing is a common and powerful approach used in both clinical and research settings. However, at present, a large fraction of the acquired genetic information is not used since pathogenicity cannot be assessed for most variants. Further complicating this scenario is the increasingly frequent description of a poli/oligogenic pattern of inheritance showing the contribution of multiple variants in increasing disease risk. We present an approach in which the entire genetic information provided by target sequencing is transformed into binary data on which we performed statistical, machine learning, and network analyses to extract all valuable information from the entire genetic profile. To test this approach and unbiasedly explore the presence of recurrent genetic patterns, we studied a cohort of 112 patients affected either by genetic Creutzfeldt–Jakob (CJD) disease caused by two mutations in the PRNP gene (p.E200K and p.V210I) with different penetrance or by sporadic Alzheimer disease (sAD). Results Unsupervised methods can identify functionally relevant sources of variation in the data, like haplogroups and polymorphisms that do not follow Hardy–Weinberg equilibrium, such as the NOTCH3 rs11670823 (c.3837 + 21 T > A). Supervised classifiers can recognize clinical phenotypes with high accuracy based on the mutational profile of patients. In addition, we found a similar alteration of allele frequencies compared the European population in sporadic patients and in V210I-CJD, a poorly penetrant PRNP mutation, and sAD, suggesting shared oligogenic patterns in different types of dementia. Pathway enrichment and protein–protein interaction network revealed different altered pathways between the two PRNP mutations. Conclusions We propose this workflow as a possible approach to gain deeper insights into the genetic information derived from target sequencing, to identify recurrent genetic patterns and improve the understanding of complex diseases. This work could also represent a possible starting point of a predictive tool for personalized medicine and advanced diagnostic applications.openTarozzi, M.; Bartoletti-Stella, A.; Dall’Olio, D.; Matteuzzi, T.; Baiardi, S.; Parchi, P.; Castellani, G.; Capellari, S.Tarozzi, M.; Bartoletti-Stella, A.; Dall’Olio, D.; Matteuzzi, T.; Baiardi, S.; Parchi, P.; Castellani, G.; Capellari, S

    Frequency of Parkinson’s Disease Genes and Role of PARK2 in Amyotrophic Lateral Sclerosis: An NGS Study

    Get PDF
    Amyotrophic lateral sclerosis (ALS) and Alzheimer’s disease (AD) patients show a higher prevalence of Lewy body disease than the general population. Additionally, parkinsonian features were found in about 30% of ALS patients. We aimed to explore the frequency of Parkinson’s disease (PD)-causative genes in ALS patients, compared to AD and healthy controls (HCs). We used next-generation sequencing multigene panels by analyzing SNCA, LRRK2, PINK1, PARK2, PARK7, SYNJ1, CHCHD2, PLA2G6, GCH1, ATP13A2, DNAJC6 and FBXO genes. GBA gene, a risk factor for PD, was also analyzed. In total, 130 ALS and 100 AD patients were investigated. PD-related genes were found to be altered in 26.2% of ALS, 20% of AD patients and 19.2% of HCs. Autosomal recessive genes were significantly more involved in ALS as compared to AD and HCs (p = 0.021). PARK2 variants were more frequent in ALS than in AD and HCs, although not significantly. However, the p.Arg402Cys variant was increased in ALS than in HCs (p = 0.025). This finding is consistent with current literature, as parkin levels were found to be decreased in ALS animal models and patients. Our results confirm the possible role of PD-related genes as risk modifier in ALS pathogenesis

    Three-dimensional virtual anatomy as a new approach for medical student’s learning

    Get PDF
    Most medical and health science schools adopt innovative tools to implement the teaching of anatomy to their undergraduate students. The increase in technological resources for educational purposes allows the use of virtual systems in the field of medicine, which can be considered decisive for improving anatomical knowledge, a requisite for safe and competent medical practice. Among these virtual tools, the Anatomage Table 7.0 represents, to date, a pivotal anatomical device for student education and training medical professionals. This review focuses attention on the potential of the Anatomage Table in the anatomical learning process and clinical practice by discussing these topics based on recent publication findings and describing their trends during the COVID-19 pandemic period. The reports documented a great interest in and a positive impact of the use of this technological table by medical students for teaching gross anatomy. Anatomage allows to describe, with accuracy and at high resolution, organ structure, vascularization, and innervation, as well as enables to familiarize with radiological images of real patients by improving knowledge in the radiological and surgical fields. Furthermore, its use can be considered strategic in a pandemic period, since it ensures, through an online platform, the continuation of anatomical and surgical training on dissecting cadavers

    Antemortem CSF Aβ42/Aβ40 ratio predicts Alzheimer's disease pathology better than Aβ42 in rapidly progressive dementias

    Get PDF
    Objective: Despite the critical importance of pathologically confirmed samples for biomarker validation, only a few studies have correlated CSF Aβ42 values in vivo with postmortem Alzheimer's disease (AD) pathology, while none evaluated the CSF Aβ42/Aβ40 ratio. We compared CSF Aβ42 and Aβ42/Aβ40 ratio as biomarkers predicting AD neuropathological changes in patients with a short interval between lumbar puncture and death. Methods: We measured CSF Aβ40 and Aβ42 and assessed AD pathology in 211 subjects with rapidly progressive dementia (RPD) and a definite postmortem diagnosis of Creutzfeldt-Jakob disease (n = 159), AD (n = 12), dementia with Lewy bodies (DLB, n = 4), AD/DLB mixed pathologies (n = 5), and various other pathologies (n = 31). Results: The score reflecting the severity of Aβ pathology showed a better correlation with ln(Aβ42/Aβ40) (R 2  = 0.506, β = âˆ’0.713, P < 0.001) than with ln(Aβ42) (R 2  = 0.206, β = âˆ’0.458, P < 0.001), which was confirmed after adjusting for covariates. Aβ42/Aβ40 ratio showed significantly higher accuracy than Aβ42 in the distinction between cases with or without AD pathology (AUC 0.818 Â± 0.028 vs. 0.643 Â± 0.039), especially in patients with Aβ42 levels ≤495 pg/mL (AUC 0.888 Â± 0.032 vs. 0.518 Â± 0.064). Using a cut-off value of 0.810, the analysis of Aβ42/Aβ40 ratio yielded 87.0% sensitivity, 88.2% specificity in the distinction between cases with an intermediate-high level of AD pathology and those with low level or no AD pathology. Interpretation: The present data support the use of CSF Aβ42/Aβ40 ratio as a biomarker of AD pathophysiology and noninvasive screener for Aβ pathology burden, and its introduction in the research diagnostic criteria for AD

    Three-Dimensional Virtual Anatomy as a New Approach for Medical Student’s Learning

    Get PDF
    none8noMost medical and health science schools adopt innovative tools to implement the teaching of anatomy to their undergraduate students. The increase in technological resources for educational purposes allows the use of virtual systems in the field of medicine, which can be considered decisive for improving anatomical knowledge, a requisite for safe and competent medical practice. Among these virtual tools, the Anatomage Table 7.0 represents, to date, a pivotal anatomical device for student education and training medical professionals. This review focuses attention on the potential of the Anatomage Table in the anatomical learning process and clinical practice by discussing these topics based on recent publication findings and describing their trends during the COVID-19 pandemic period. The reports documented a great interest in and a positive impact of the use of this technological table by medical students for teaching gross anatomy. Anatomage allows to describe, with accuracy and at high resolution, organ structure, vascularization, and innervation, as well as enables to familiarize with radiological images of real patients by improving knowledge in the radiological and surgical fields. Furthermore, its use can be considered strategic in a pandemic period, since it ensures, through an online platform, the continuation of anatomical and surgical training on dissecting cadavers.openBartoletti-Stella, Anna; Gatta, Valentina; Mariani, Giulia Adalgisa; Gobbi, Pietro; Falconi, Mirella; Manzoli, Lucia; Faenza, Irene; Salucci, SaraBartoletti-Stella, Anna; Gatta, Valentina; Mariani, Giulia Adalgisa; Gobbi, Pietro; Falconi, Mirella; Manzoli, Lucia; Faenza, Irene; Salucci, Sar

    How Inflammation Pathways Contribute to Cell Death in Neuro-Muscular Disorders

    Get PDF
    Neuro-muscular disorders include a variety of diseases induced by genetic mutations resulting in muscle weakness and waste, swallowing and breathing difficulties. However, muscle alterations and nerve depletions involve specific molecular and cellular mechanisms which lead to the loss of motor-nerve or skeletal-muscle function, often due to an excessive cell death. Morphological and molecular studies demonstrated that a high number of these disorders seem characterized by an upregulated apoptosis which significantly contributes to the pathology. Cell death involvement is the consequence of some cellular processes that occur during diseases, including mitochondrial dysfunction, protein aggregation, free radical generation, excitotoxicity and inflammation. The latter represents an important mediator of disease progression, which, in the central nervous system, is known as neuroinflammation, characterized by reactive microglia and astroglia, as well the infiltration of peripheral monocytes and lymphocytes. Some of the mechanisms underlying inflammation have been linked to reactive oxygen species accumulation, which trigger mitochondrial genomic and respiratory chain instability, autophagy impairment and finally neuron or muscle cell death. This review discusses the main inflammatory pathways contributing to cell death in neuro-muscular disorders by highlighting the main mechanisms, the knowledge of which appears essential in developing therapeutic strategies to prevent the consequent neuron loss and muscle wasting

    The characterization of AD/PART co-pathology in CJD suggests independent pathogenic mechanisms and no cross-seeding between misfolded Aβ and prion proteins

    Get PDF
    Current evidence indicating a role of the human prion protein (PrP) in amyloid-beta (Aβ) formation or a synergistic effect between Aβ and prion pathology remains controversial. Conflicting results also concern the frequency of the association between the two protein misfolding disorders and the issue of whether the apolipoprotein E gene (APOE) and the prion protein gene (PRNP), the major modifiers of Aβ- and PrP-related pathologies, also have a pathogenic role in other proteinopathies, including tau neurofibrillary degeneration. Here, we thoroughly characterized the Alzheimer's disease/primary age-related tauopathy (AD/PART) spectrum in a series of 450 cases with definite sporadic or genetic Creutzfeldt-Jakob disease (CJD). Moreover, we analyzed: (i) the effect of variables known to affect CJD pathogenesis and the co-occurring Aβ- and tau-related pathologies; (II) the influence of APOE genotype on CJD pathology, and (III) the effect of AD/PART co-pathology on the clinical CJD phenotype. AD/PART characterized 74% of CJD brains, with 53.3% and 8.2% showing low or intermediate-high levels of AD pathology, and 12.4 and 11.8% definite or possible PART. There was no significant correlation between variables affecting CJD (i.e., disease subtype, prion strain, PRNP genotype) and those defining the AD/PART spectrum (i.e., ABC score, Thal phase, prevalence of CAA and Braak stage), and no difference in the distribution of APOE ε4 and ε2 genotypes among CJD subtypes. Moreover, AD/PART co-pathology did not significantly affect the clinical presentation of typical CJD, except for a tendency to increase the frequency of cognitive symptoms. Altogether, the present results seem to exclude an increased prevalence AD/PART co-pathology in sporadic and genetic CJD, and indicate that largely independent pathogenic mechanisms drive AD/PART and CJD pathology even when they coexist in the same brain

    Combined Treatment with PI3K Inhibitors BYL-719 and CAL-101 Is a Promising Antiproliferative Strategy in Human Rhabdomyosarcoma Cells

    Get PDF
    Rhabdomyosarcoma (RMS) is a highly malignant and metastatic pediatric cancer arising from skeletal muscle myogenic progenitors. Recent studies have shown an important role for AKT signaling in RMS progression. Aberrant activation of the PI3K/AKT axis is one of the most frequent events occurring in human cancers and serves to disconnect the control of cell growth, survival, and metabolism from exogenous growth stimuli. In the study reported here, a panel of five compounds targeting the catalytic subunits of the four class I PI3K isoforms (p110α, BYL-719 inhibitor; p110β, TGX-221 inhibitor; p110γ, CZC24832; p110δ, CAL-101 inhibitor) and the dual p110α/p110δ, AZD8835 inhibitor, were tested on the RMS cell lines RD, A204, and SJCRH30. Cytotoxicity, cell cycle, apoptosis, and the activation of downstream targets were analyzed. Of the individual inhibitors, BYL-719 demonstrated the most anti-tumorgenic properties. BYL-719 treatment resulted in G1/G0 phase cell cycle arrest and apoptosis. When combined with CAL-101, BYL-719 decreased cell viability and induced apoptosis in a synergistic manner, equaling or surpassing results achieved with AZD8835. In conclusion, our findings indicate that BYL-719, either alone or in combination with the p110δ inhibitor, CAL-101, could represent an efficient treatment for human rhabdomyosarcoma presenting with aberrant upregulation of the PI3K signaling pathway

    Analysis of RNA Expression Profiles Identifies Dysregulated Vesicle Trafficking Pathways in Creutzfeldt-Jakob Disease

    Get PDF
    Functional genomics applied to the study of RNA expression profiles identified several abnormal molecular processes in experimental prion disease. However, only a few similar studies have been carried out to date in a naturally occurring human prion disease. To better characterize the transcriptional cascades associated with sporadic Creutzfeldt-Jakob disease (sCJD), the most common human prion disease, we investigated the global gene expression profile in samples from the frontal cortex of 10 patients with sCJD and 10 non-neurological controls by microarray analysis. The comparison identified 333 highly differentially expressed genes (hDEGs) in sCJD. Functional enrichment Gene Ontology analysis revealed that hDEGs were mainly associated with synaptic transmission, including GABA (q value = 0.049) and glutamate (q value = 0.005) signaling, and the immune/inflammatory response. Furthermore, the analysis of cellular components performed on hDEGs showed a compromised regulation of vesicle-mediated transport with mainly up-regulated genes related to the endosome (q value = 0.01), lysosome (q value = 0.04), and extracellular exosome (q value < 0.01). A targeted analysis of the retromer core component VPS35 (vacuolar protein sorting-associated protein 35) showed a down-regulation of gene expression (p value= 0.006) and reduced brain protein levels (p value= 0.002). Taken together, these results confirm and expand previous microarray expression profile data in sCJD. Most significantly, they also demonstrate the involvement of the endosomal-lysosomal system. Since the latter is a common pathogenic pathway linking together diseases, such as Alzheimer’s and Parkinson’s, it might be the focus of future studies aimed to identify new therapeutic targets in neurodegenerative diseases
    • …
    corecore