421 research outputs found

    Immunomodulatory properties of induced pluripotent stem cell-derived mesenchymal cells

    Get PDF
    Abstract not availableJia Ng, Kim Hynes, Gregory White, Kisha Nandini Sivanathan, Kate Vandyke, Peter Mark Bartold and Stan Grontho

    Salivary small extracellular vesicles associated miRNAs in periodontal status-a pilot study

    Get PDF
    This pilot study aims to investigate whether salivary small extracellular vesicle (sEV)-associated microRNAs could act as potential biomarkers for periodontal disease status. Twenty-nine participants (10 who were healthy, nine with gingivitis, 10 with stage III/IV periodontitis) were recruited and unstimulated whole saliva samples were collected. Salivary sEVs were isolated using the size-exclusion chromatography (SEC) method and characterised by morphology, EV-protein and size distribution using transmission electron microscopy (TEM), Western Blot and Nanoparticle Tracking Analysis (NTA), respectively. Ten mature microRNAs (miRNAs) in salivary sEVs and saliva were evaluated using RT-qPCR. The discriminatory power of miRNAs as biomarkers in gingivitis and periodontitis versus healthy controls was evaluated by Receiver Operating Characteristics (ROC) curves. Salivary sEVs were comparable to sEVs morphology, mode, size distribution and particle concentration in healthy, gingivitis and periodontitis patients. Compared to miRNAs in whole saliva, three significantly increased miRNAs (hsa-miR-140-5p, hsa-miR-146a-5p and hsa-miR-628-5p) were only detected in sEVs in periodontitis when compared to that of healthy controls, with a good discriminatory power (area under the curve (AUC) = 0.96) for periodontitis diagnosis. Our study demonstrated that salivary sEVs are a non-invasive source of miRNAs for periodontitis diagnosis. Three miRNAs that are selectively enriched in sEVs, but not whole saliva, could be potential biomarkers for periodontal disease status.Pingping Han, Peter Mark Bartold, Carlos Salomon and Saso Ivanovsk

    Proteoglycans from adult human gingival epithelium

    Full text link

    Periodontal and dental pulp cell-derived small extracellular vesicles: a review of the current status

    Get PDF
    Extracellular vesicles (EVs) are membrane-bound lipid particles that are secreted by all cell types and function as cell-to-cell communicators through their cargos of protein, nucleic acid, lipids, and metabolites, which are derived from their parent cells. There is limited information on the isolation and the emerging therapeutic role of periodontal and dental pulp cell-derived small EVs (sEVs, <200 nm, or exosome). In this review, we discuss the biogenesis of three EV subtypes (sEVs, microvesicles and apoptotic bodies) and the emerging role of sEVs from periodontal ligament (stem) cells, gingival fibroblasts (or gingival mesenchymal stem cells) and dental pulp cells, and their therapeutic potential in vitro and in vivo. A review of the relevant methodology found that precipitation-based kits and ultracentrifugation are the two most common methods to isolate periodontal (dental pulp) cell sEVs. Periodontal (and pulp) cell sEVs range in size, from 40 nm to 2 μm, due to a lack of standardized isolation protocols. Nevertheless, our review found that these EVs possess anti-inflammatory, osteo/odontogenic, angiogenic and immunomodulatory functions in vitro and in vivo, via reported EV cargos of EV–miRNAs, EV–circRNAs, EV–mRNAs and EV–lncRNAs. This review highlights the considerable therapeutic potential of periodontal and dental pulp cell-derived sEVs in various regenerative applications. View Full-TextShu Hua, Peter Mark Bartold, Karan Gulati, Corey Stephen Moran, Sašo Ivanovski and Pingping Ha

    Inhibiting histone deacetylase 1 suppresses both inflammation and bone loss in arthritis

    Get PDF
    Objective. Histone deacetylase 1 (HDAC1) is highly expressed in the synovium of RA patients. Thus we aimed to investigate a novel HDAC inhibitor (HDACi), NW-21, designed to target HDAC1. The effect of NW-21 on osteoclast formation and activity, cytokine and chemokine expression in vitro and arthritis in mice was assessed

    Pre- and post-operative cerebral blood flow changes in subarachnoid haemorrhage

    Full text link
    Assessment of cerebral perfusion on patients with subarachnoid haemorrhage (SAH) in the Neurologic Intensive Care Unit is difficult since nuclear medicine imaging modalities capable of measuring cerebral blood flow (CBF) are not generally available. We performed 101 quantitative (ml/100g-min) bedside CBF measurements on 40 individual patients to correlate SAH grade with CBF and to assess the effect of surgical intervention on CBF. Global CBF (G-CBF) and bihemispheric CBF (B-CBF) asymmetry were correlated with the grade of SAH pre- and post-operatively.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/41645/1/701_2005_Article_BF01405693.pd

    COX-1 and COX-2 in Human Periodontal Disease States

    Get PDF
    Cyclooxygenase (COX) catalyses the conversion of arachidonic acid into prostanoids and related compounds which have been implicated in periodontal bone loss. Therefore, the aim of this study was to quantify COX-1 and COX-2 expression in gingival tissue derived from healthy/gingivitis and periodontitis sites

    The effect of a periodontal intervention on cardiovascular risk markers in Indigenous Australians with periodontal disease: the PerioCardio study

    Get PDF
    BackgroundIndigenous Australians experience an overwhelming burden of chronic disease, including cardiovascular diseases. Periodontal disease (inflammation of the tissues surrounding teeth) is also widespread, and may contribute to the risk of cardiovascular diseases via pathogenic inflammatory pathways. This study will assess measures of vascular health and inflammation in Indigenous Australian adults with periodontal disease, and determine if intensive periodontal therapy improves these measures over a 12 month follow-up. The aims of the study are: (i) to determine whether there is a dose response relationship between extent and severity of periodontal disease and measures of vascular health and inflammation among Indigenous Australian adults with moderate to severe periodontal disease; and (ii) to determine the effects of periodontal treatment on changes in measures of vascular health and inflammation in a cohort of Indigenous Australians.Methods/designThis study will be a randomised, controlled trial, with predominantly blinded assessment of outcome measures and blinded statistical analysis. All participants will receive the periodontal intervention benefits (with the intervention delayed 12 months in participants who are randomised to the control arm). Participants will be Indigenous adults aged ≥25 years from urban centres within the Top End of the Northern Territory, Australia. Participants assessed to have moderate or severe periodontal disease will be randomised to the study's intervention or control arm. The intervention involves intensive removal of subgingival and supragingival calculus and plaque biofilm by scaling and root-planing. Study visits at baseline, 3 and 12 months, will incorporate questionnaires, non-fasting blood and urine samples, body measurements, blood pressure, periodontal assessment and non-invasive measures of vascular health (pulse wave velocity and carotid intima-media thickness). Primary outcome measures are pulse wave velocity and carotid intima-media thickness.DiscussionThe study will assess the periodontal-cardiovascular disease relationship among Indigenous Australian adults with periodontal disease, and the effectiveness of an intervention aimed at improving periodontal and cardiovascular health. Efforts to understand and improve Indigenous oral health and cardiovascular risk may serve as an important means of reducing the gap between Indigenous and non-Indigenous health in Australia.Trial registrationAustralia and New Zealand Clinical Trials Register (ANZCTR): ACTRN12610000817044.Michael R Skilton, Louise J Maple-Brown, Kostas Kapellas, David S Celermajer, Mark Bartold, Alex Brown, Kerin O'Dea, Gary D Slade, and Lisa M Jamieso

    Setting the pace: the 2011 Australasian Podiatry Council conference

    Get PDF
    The 2011 Australasian Podiatry Council conference was held from April 26 to 29 in Melbourne, Victoria, Australia. This commentary provides a brief overview of the conference, including the speakers and topic areas covered, selected original research highlights, and award winning presentations

    Protein kinase A enhances lipopolysaccharide-induced IL-6, IL-8, and PGE2 production by human gingival fibroblasts

    Get PDF
    <p>Abstract</p> <p>Objective</p> <p>Periodontal disease is accompanied by inflammation of the gingiva and destruction of periodontal tissues, leading to alveolar bone loss in severe clinical cases. Interleukin (IL)-6, IL-8, and the chemical mediator prostaglandin E<sub>2 </sub>(PGE<sub>2</sub>) are known to play important roles in inflammatory responses and tissue degradation.</p> <p>Recently, we reported that the protein kinase A (PKA) inhibitor H-89 suppresses lipopolysaccharide (LPS)-induced IL-8 production by human gingival fibroblasts (HGFs). In the present study, the relevance of the PKA activity and two PKA-activating drugs, aminophylline and adrenaline, to LPS-induced inflammatory cytokines (IL-6 and IL-8) and PGE<sub>2 </sub>by HGFs were examined.</p> <p>Methods</p> <p>HGFs were treated with LPS from <it>Porphyromonas gingivalis </it>and H-89, the cAMP analog dibutyryl cyclic AMP (dbcAMP), aminophylline, or adrenaline. After 24 h, IL-6, IL-8, and PGE<sub>2 </sub>levels were evaluated by ELISA.</p> <p>Results</p> <p>H-89 did not affect LPS-induced IL-6 production, but suppressed IL-8 and PGE<sub>2 </sub>production. In contrast, dbcAMP significantly increased LPS-induced IL-6, IL-8, and PGE<sub>2 </sub>production. Up to 10 μg/ml of aminophylline did not affect LPS-induced IL-6, IL-8, or PGE<sub>2 </sub>production, but they were significantly increased at 100 μg/ml. Similarly, 0.01 μg/ml of adrenaline did not affect LPS-induced IL-6, IL-8, or PGE<sub>2 </sub>production, but they were significantly increased at concentrations of 0.1 and 1 μg/ml. In the absence of LPS, H-89, dbcAMP, aminophylline, and adrenaline had no relevance to IL-6, IL-8, or PGE<sub>2 </sub>production.</p> <p>Conclusion</p> <p>These results suggest that the PKA pathway, and also PKA-activating drugs, enhance LPS-induced IL-6, IL-8, and PGE<sub>2 </sub>production by HGFs. However, aminophylline may not have an effect on the production of these molecules at concentrations used in clinical settings (8 to 20 μg/ml in serum). These results suggest that aminophylline does not affect inflammatory responses in periodontal disease.</p
    corecore