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ABSTRACT
MSC-like populations derived from induced pluripotent stem cells (iPSC-MSC) serve as an alternative stem cell source due to their high
proliferative capacity. In this study, we assessed the immunomodulatory potential of iPSC-MSC generated from periodontal ligament (PDL)
and gingival (GF) tissue. The iPSC-MSC lines exhibited a similar level of suppression of mitogen-stimulated peripheral blood mononuclear
cells (PBMNC) proliferation compared to their respective parental fibroblast populations in vitro. Moreover, iPSC-MSC demonstrated the
ability to suppress T-cells effector cells, Th1/Th2/Th17 populations, and increase levels of Treg cells. In order to investigate the mechanisms
involved, expression of commonMSC-derived soluble factors known to supress lymphocyte proliferation were assessed in iPSC-MSC cultured
with PBMNC with direct cell–cell contact or separated in transwells. Real-time PCR analysis of factors known to be involved in MSC mediated
immune regulation, found a general trend of elevated IDO1 and IL6 transcript levels in iPSC-MSC lines and their respective primary cells
co-cultured with activated PBMNC, with a wide range of gene expression levels between the different mesenchymal cell types. The results
suggest that different iPSC-MSC may be useful as a potential alternative source of cells for future clinical use in therapeutic applications
because of their potent immunosuppressive properties. J. Cell. Biochem. 9999: 1–10, 2016. © 2016 Wiley Periodicals, Inc.
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Mesenchymal stem cells (MSC) derived from various tissue
sources are well recognized for their multilineage potential

[Kuznetsov et al., 1997; Pittenger et al., 1999; Gronthos et al., 2000,
2003; Seo et al., 2004] and ability to modulate allogeneic immune
cells [Le Blanc et al., 2003, 2004; Wada et al., 2013]. Bone marrow
derived MSC (BMSC) are the most extensively studied MSC
population, which are currently being evaluated as a therapy in a
range of immunological inflammatory conditions and autoimmune

diseases [Uccelli et al., 2008; Shi et al., 2010; Atoui and Chiu, 2012].
They are also thought to play a part in the transplantation
tolerance and foetal-maternal tolerance [Bartholomew et al.,
2002; Rasmusson, 2006; Nauta and Fibbe, 2007]. The immunomod-
ulatory properties of MSC have been shown to be mediated through
the inhibition of cell proliferation and survival by depletion of
tryptophan via increased activity of the tryptophan catabolic
enzyme indoleamine-2,3-dioxygenase (IDO) [Meisel et al., 2004],
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induction of cytokine secretions through direct and indirect cell–cell
interactions with immune cells like antigen presenting cells, T cells
[Di Nicola et al., 2002], B cells [Deng et al., 2005], natural killer (NK)
cells [Sotiropoulou et al., 2006], and dendritic cells (DCs) [Maccario
et al., 2005]. However, the utility of BMSC for clinical scale
production is hindered by their limited life-span in ex vivo culture
(40–50 population doublings) and decline in differentiation
potential by 25–30 population doublings following ex vivo
expansion [Menicanin et al., 2010; Bright et al., 2015]. Therefore,
it is important that alternative, non-invasive, sources of MSC are
identified for utilization in clinical therapies [Hynes et al., 2014].

Induced pluripotent stem cells (iPSC) are being considered as a
promising cellular source for the generation of MSC [Lian et al.,
2010]. These unique cells were initially generated from adult mouse
fibroblast cells using transcription factors, Oct3/4, Sox2, c-Myc, and
Klf4 [Takahashi and Yamanaka, 2006]. Human iPSC were later
successfully generated from adult fibroblast cells with similar
properties to embryonic stem cells, including their ability for
unlimited growth and the capacity to differentiate into cells types of
all three germ layers, without the requirement of embryonic tissue
[Takahashi et al., 2007]. Since their discovery, iPSC have beenwidely
used in disease modelling and drug discovery by characterizing the
in vitro phenotype of disease-relevant pathological cells from
patients, with an increasing interest for their application in the
field of regenerative medicine [Grskovic et al., 2011; Robinton and
Daley, 2012].

To overcome issues surrounding the use of primary MSC
preparations, numerous groups have attempted to generate large
qualities of MSC-like populations from different pluripotent stem
cell sources [Barberi et al., 2005; Olivier et al., 2006; Karlsson et al.,
2009; Mahmood et al., 2010; Gruenloh et al., 2011; Liu et al., 2012;
Villa-Diaz et al., 2012; Wei et al., 2012]. Comparative epigenetic
analyses of iPSC derived MSC-like cells (iPSC-MSC) and BMSC
identified similar characteristics and properties [Frobel et al., 2014].
Importantly, iPSC-MSC were found to exhibit a distinct proliferative
advantage over primary bone marrow derived MSC, due to their
increased life-span of up to 120 population doublings without the
loss of their multi-differentiation potential [Lian et al., 2010]. Proof-
of-principal studies have demonstrated the efficacy of iPSC-MSC for
the treatment of periodontal disease and allergic airway inflamma-
tion in suppressing inflammatory responses and promoting tissue
recovery [Sun et al., 2012; Hynes et al., 2013]. In light of this, the
immunomodulatory properties of iPSC-MSC could make them a
promising alternative to primary MSC for therapeutic applications
for immune based clinical indications.

Our group has previously generated MSC-like cells from human
iPSC derived from different dental derived tissues, gingival
fibroblasts (GF) and periodontal ligament (PDL) cells [Hynes et al.,
2014] that meet the minimal criterion for classification of MSC
[Dominici et al., 2006]. Given that somatic fibroblast cells from
periodontal ligament and gingiva-derived MSC have been reported
to have suppress immune cell responses [Wada et al., 2009; Zhang
et al., 2009; Chen et al., 2013], we hypothesized that the iPSC-MSC
derived from these tissues would also possess similar properties.
Therefore, the aim of this study was to assess and compare the
immunomodulatory properties and cytokine profile of different

populations of human iPSC derived MSC to the primary cells from
the respective tissues.

MATERIALS AND METHODS

CELL CULTURE
Primary gingivalfibroblast (GF) and periodontal ligament (PDL) cells
were prepared from healthy human premolars collected with
informed consent from normal adult patients undergoing orthodon-
tic therapy in the University of Adelaide Dental Hospital, in
accordance with procedures approved by the Royal Adelaide
Hospital Ethics Committee (University of Adelaide Human Research
Ethics Committee number H-112-2008), and used to generate iPSC
lines as previously described [Wada et al., 2011b]. Generation and
characterization of iPSC-MSC derived from periodontal and gingival
tissue has been previously described [Hynes et al., 2013, 2014]. The
iPSC-MSC lines and their respective primary GF and PDL cells
(University of Adelaide Human Research Ethics Committee number
H-112-2008) were cultured and maintained in a-MEM with 10%
fetal calf serum, 1� non-essential amino acids (Gibco, Thermo
Fisher, Waltham, MA), 15mM HEPES (Sigma–Aldrich),
10mM sodium pyruvate, 100mM L-ascorbate-2-phosphate, 2mM
L-Glutamine, and 50U/ml penicillin/50mg/ml streptomycin as
previously described [Hynes et al., 2014].

Human peripheral blood mononuclear cells (PBMNC) were
isolated by density gradient using heparinized blood collected
from normal healthy adult volunteers, following informed consent
in accordance with procedures approved by the Royal Adelaide
Hospital Human Ethics Committee (protocol number 940911A) on
Ficoll-Isopaque (Lymphoprep; Fresenius Kabi Norge AS, Olso,
Norway) then cultured in RPMI-1640 medium as previously
described [Wada et al., 2009].

PBMNC PROLIFERATION ASSAY
iPSC-MSC and primary GF and PDL cells were inactivated by
g-irradiation (30Gy) and plated into a 96-well flat-bottom plate at a
concentration of 1� 105/well 24 h before the addition of PBMNC
pre-labelled with 2mMof carboxyfluorescein diacetate succinimidyl
ester (CFSE; Invitrogen, Eugene, OR). PBMNC were cultured in
the presence or absence of iPSC-MSC or primary cells, at a 1:1
(iPSC-MSC/primary cell: PBMNC) ratio, in 10mg/ml of concanavalin
A (Con A; Sigma–Aldrich), an inducer of PBMNC proliferation, for
5 days. Colcemid (Gibco), a cell-cycle arresting agent, was used as a
positive control at a concentration of 100 ng/ml. PBMNC prolifera-
tion was analyzed by flow cytometry to detect green fluorescence
(CFSE) and analysis of cell division and proliferation index (average
fold-expansion) were achieved using FCS 4 express flow cytometry
software (De Novo Software, Los Angeles, CA). Proliferation index
was expressed as a percentage of PBMNC proliferation in the absence
of iPSC-MSC, GF, and PDL cells.

TRANSWELL CO-CULTURES
Irradiated iPSC-MSC cells, GF or PDL cells (1� 105/well for 96-well
plate; 1.5� 105/well for 24-well plate) were seeded into the bottom
well, 24 h prior to the addition of PBMNC. An equal number of
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CFSE-labelled PBMNC were then added to the 0.4mM transwell
membrane inserts (Corning, Corning, NY) in the presence of Con A
(10mg/ml) and cultured for 5 days.

ANNEXIN V STAINING OF APOPTOTIC CELLS
At day 5, PBMNC collected from direct co-culture or transwell plates
were washed twice with 1� phosphate buffered solution (PBS), and
stainedwith Annexin-V-APC (BD Bioscience, San Jose, CA) to detect
apoptotic cells, according tomanufacturer0s instructions. Annexin V
positive cells were analyzed using the Cytomics FC500 flow analyzer
(Software version 2.2, Beckman Coulter, Miami, FL).

REAL-TIME POLYMERASE CHAIN REACTION ANALYSIS (qPCR)
Total RNA of iPSC-MSC, GF, and PDL cells were collected from 6-well
co-cultures and transwell plate using TRIzol (Invitrogen, Thermo
Fisher) as per manufacturer0s instructions. Complementary DNA
(cDNA) was generated using SuperScript III Reverse Transcriptase Kit
(Invitrogen) according to manufacturer0s instructions. Transcript
levels for IL-6,TGF-b1, and IDO1were assessedbyCFXconnect Real-
Time system (Bio-Rad, Hercules, CA) using RT2 SYBR Green/ROX
qPCR Master mix (Qiagen, Hilden, Germany). Primer Sequences: IL6
(NM_000600.3, Fwd: acagacagccactcacctctt, Rev: tttcaccagg-
caagtctcct); TGFB1 (NM_000660, Fwd: cacgtggagctgtaccagaa, Rev:
gaacccgttgatgtccactt); IDO1 (NM_002164.5, Fwd: agagtcaaatccct-
cagtcc, Rev: aaatcagtgcctccagttcc). ACTB (NM_001101.3, Fwd:
gatcattgctcctcctgagc, Rev: gtcatagtccgcctagaagcat).

T-CELL SELECTION AND SUBSET ANALYSIS
Magnetic activated cell sorting was used to isolate CD3þ T cells from
PBMNC preparations as per the manufacturer0s instructions as
described above. CD3þ T cells were stimulated with 50ng/ml phorbol
12-myristate 13-acetate (PMA), 1mg/ml ionomycin, and 290 nM BD
GolgiStopTM for 4 h then cultured in the presence or absence of
irradiated PDL cells or PDL-iPSC-MSC like cells for 3 days. After the
3 days in co-culture cells were harvested and subjected to cytometric
flowanalysis, to identify theproportionof different T-cell populations
using a T-cell panel analysis antibody kit (BD PharmingenTM): human
na€ıveT-cells (CD45RAþCD197þ), effector T-cells (CD45RAþCD197�),
central memory T-cells (CD45RA�CD197þ), effector memory T-cells
(CD45RA�CD197�). The Human T helper cells (Th), were defined as:
Th1 (CD4þIFNgþ), Th2 (CD4þIL-4þ), Th17 (CD4þIL-17Aþ).
T-regulatory cells (T-regs) were assessed as previously described
[Sivanathan et al., 2015]. Briefly, irradiated iPSC-MSC or PDL cells
were seeded overnight into 24-well flat bottom plates. CD3þ T cells
were co-culturedwith iPSC-MSC or PDL in the presence of absence of
the mitogen, 10mg/ml phytohemagglutinin [Tan et al., 2015] for
5 days. The percentage of Tregs was based on the phenotype
CD3þCD4þCD25highCD127lowFoxP3þ. All data were collected using a
BD LSRFortessaTM X–20 (BD Biosciences) and analyzed with
FCSExpressTM4.

STATISTICAL ANALYSIS
Prism v6 (GraphPad software, La Jolla, CA) was used for statistical
analysis. Ordinary one-way ANOVA with Dunnett0s multiple
comparisons test, with single pooled variance was used for annexin
V staining. Ordinary one-way ANOVA, with Greenhouse–Geisser

correction and Tukey0s multiple comparison test, with individual
variances computed for each comparisonwas used for comparison of
proliferation suppression by all cell lines. A two-way ANOVA test
with Sidak0s multiple comparisons test was used to compare qPCR
expression between MSC and iPSC-MSC co-cultured with PBMNC
directly or separated in transwells, and comparison of proliferation
suppression by PDL and GF iPSC-MSCs to primary PDL and GD
primary lines. P-value �0.05 were considered significant.

RESULTS

iPSC-MSC SUPPRESS THE PROLIFERATION OF ACTIVATED PBMNC
The ability of iPSC-MSC to suppress PBMNC proliferation was
examined under direct cell–cell contact (co-culture) and contact-
independent (transwell) conditions. Con A-stimulated PBMNC were
labelled with the fluorescence dye, CFSE, and then cultured in the
presence or absence of iPSC-MSC or primary GF or PDL cells. PBMNC
proliferation was assessed after 5 days of culture by flow cytometric
analysis. Analysis of the proliferation index showed that that only
PDL iPSC-MSC showed suppression of Con A-stimulated PBMNC
proliferation from all five donors in contact-dependent co-culture
conditions (Fig. 1). GF iPSC-MSC showed significant suppression of
PBMNC proliferation in four out of five PBMNC donors (Fig. 1A). In
the contact-independent transwell assays, all cell lines showed
significant suppression of PBMNC proliferation with all four PBMNC
donorswith no significant difference between the two iPSC-MSC lines
(Fig. 1B). The efficiency of the suppression of PBMNC proliferation by
PDL iPSC-MSC and GF iPSC-MSC lines were also compared with the
primary PDL and GF lines from which they were originally generated
(Fig. 1C–F). Both PDL iPSC-MSC and GF iPSC-MSC displayed
comparable levels of suppression of Con A-stimulated PBMNC in
comparison to their respective primary cell lines both in co-culture
(Fig. 1C and D) and in transwell (Fig. 1E and F) conditions.

To determine whether iPSC-MSC were inducing PBMNC to
undergo apoptosis, annexin V cell surface staining of PBMNC was
assessed in the presence or absence of iPSC-MSC or primary cells
under co-culture or transwell conditions. While colcemid treatment
induced a significant increase in PBMNC apoptosis, there was no
significant increase in the percentage of annexin V positive PBMNC
cultured with the iPSC-MSC lines or the primary PDL or GF cell lines
in co-culture or transwell conditions compared with Con-A
stimulated PBMNC alone (Fig. 2A and B).

SOLUBLE FACTORS INVOLVED IN THE SUPPRESSION OF CON
A-STIMULATED PBMNC PROLIFERATION
We next employed qPCR to assess the gene expression levels of
the cytokines TGF-b1, IL-6, and the tryptophan catabolic enzyme
Indoleamine-pyrrole 2,3-dioxygenase (IDO1). These factors were
previously shown to contribute to the immunosuppressive effects of
bone marrow derived MSC [Wada et al., 2013; Sivanathan et al.,
2014]. Increased levels of IDO1 gene expression were observed in the
different iPSC-MSC, PDL, and GF cells when co-cultured with
activated PBMNC, albeit at different levels (Fig. 3A). Similarly, gene
expression levels of IL6 were found to be unregulated in the iPSC-
MSC lines, GF, PDL cells, when co-cultured with activated PBMNC

JOURNAL OF CELLULAR BIOCHEMISTRY IMMUNOMODULATORY PROPERTIES OF iPSC-MSC 3



Fig. 1. iPSC-MSC mediated suppression of activated PBMNC. The graphs represent relative proliferation index of Con A-stimulated PBMNC co-cultured (A) or cultured in
transwell (B) with different iPSC-MSC and primary fibroblasts. The data were normalized to that of PBMNC alone. Colcemid was used as a positive control for suppression of Con
A-stimulated PBMNC proliferation. (C–F) Showed the relative proliferation suppression of con-A stimulated PBMNC by dental iPSC-MSC cells compared with their respective
parental primary fibroblast lines. Results showmean� SEM data from 5 (A) or 4 (B–F) PBMNC donors, each performed in triplicate. � ¼ P� 0.05, ordinary one-way ANOVA, with
Greenhouse–Geisser correction and Tukey0s multiple comparison test (A and B), and two-way ANOVA with Sidak0s multiple comparisons test (C–F).

Fig. 2. iPSC-MSC do not induce apoptosis in PBMNC co-cultures. Annexin V staining of con-A stimulated PBMNC in co-culture (A) or in transwell (B) in the presence or absence
of immunomodulatory cells (iPSC-MSC, primary PDL and GF fibroblasts). All experiments were performed in triplicates and values are expressed as mean� SD. � ¼ P� 0.05,
ordinary one-way ANOVA with Dunnett0s multiple comparisons test, with a single pooled variance was used.
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(Fig. 3A). In contrast, differential TGFB1 gene expression patterns
were observed between the various iPSC-MSC populations and
primary fibroblasts. All data were normalized to the MSC-associated
marker, CD73.

Parallel experiments examined IDO1, TGFB1, and IL6 gene
expression levels in the iPSC-MSC lines and primary cell
populations, when cultured with activated PBMNC in a contact-
independent transwell setting (Fig. 3B). A general elevation in the
transcript levels of IDO1, TGFB1, and IL6 was observed for the
different iPSC-MSC lines and primary fibroblasts, in the presence of
activated PBMNC, with varying levels of expression between the
different mesenchymal populations (Fig. 3B).

iPSC-MSC REGULATION OF T-CELL SUBSETS
We next investigated the effect of iPSC-MSC and primary lines on
subsets of helper T-cells in co-cultures by assessing the proportions

of na€ıve T-cells, effector cells, central memory cells, effectormemory
cells. These experiments were conducted with the PDL iPSC-MSC
and primary PDL cells as the PDL iPSC-MSC had demonstrated the
most significant suppression of PBMNC proliferation in earlier
experiments, when compared to GF iPSC-MSC. Flow cytometric
analysis of the proportions of T-cell populations in the co-culture
assays showed that PDL iPSC-MSC and PDL cells had no effect on the
proportion of na€ıve, central memory, and effector memory
CD3þCD4þ T-cell populations (data not shown). However, PDL
iPSC-MSC and primary PDL cells significantly decreased the
proportion of CD3�CD4þ effector cells (CD45RAþCD197�), com-
pared to that of stimulated T-cells (Fig. 4). Assessment of the effects
of PDL iPSC-MSC and primary PDL cells on Th1 (CD4þCD8�IFNgþ),
Th2 (CD4þCD8�IL-4þ) and Th17 (CD4þCD8�IL-17þ) cells demon-
strated that PDL iPSC-MSC and primary PDL cells significantly
reduced the proportion of Th1 and Th2 cells present (Fig. 5).

Fig. 3. Differential cytokine expression patterns in iPSC-MSC and primaryfibroblasts co-culture with PBMNC. (A) IDO1, TGFB1, and IL6 gene expression levels by iPSC-MSC and
primary PDL or GF cells co-cultured alone or with activated PBMNC were measured by qPCR. Gene expression levels were normalized to the MSC marker CD73. All experiments
were performed in triplicates and values are expressed as mean� SD from a representative experiment. (B) Gene expression levels of IDO1, TGFB1, and IL6 in iPSC-MSC, PDL, or GF
primary cells cultured in the presence or absence of activated PBMNC in transwell conditions were measured by qPCR. Gene expression levels were normalized to b-actin. All
experiments were performed in triplicates and values are expressed as mean� SD from a representative experiment. � ¼ P� 0.05, two-way ANOVA with Sidak0s multiple
comparisons test, compared with MSCs without PBMNC, ^¼ P� 0.05, two-way ANOVA with Sidak0s multiple comparisons test.
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Furthermore, co-culture with PDL iPSC-MSC and primary PDL cells
also resulted in a reduction in the proportion of Th17 cells present,
however; only primary PDL cells achieved a significant reduction in
Th17 cells (Fig. 5).

Similar experiments were conducted to assess the proportion of
Tregs in activated CD3þ T-cells following co-culture with either PDL
derived iPSC-MSC or primary PDL cells. The data showed that
primary PDL cells exhibited a significant increase in the percentage
of Tregs (CD4þ FoxP3þ), compared to unstimulated and stimulated
T-cells alone (Fig. 6). However, as seen above with the Th17 cells,
co-culture of activated CD3þ T-cells with PDL iPSC-MSC resulted in
an increased trend in the proportion of Treg cells, which was not
statistically significant when compared to the stimulated CD3þ

T-cell population alone (Fig. 6).

DISCUSSION

In this study, we compared the immunomodulatory properties of
different human iPSC-MSC lines [Hynes et al., 2014] to those of
primary GF and PDL cells. Our study demonstrated that iPSC-MSC
exhibited the ability to regulate the proliferation of mitogen
activated lymphocytes similar to that reported for MSC-like
populations generated from embryonic stem cells [Kimbrel et al.,
2014]. All human derived iPSC-MSC and primary cell lines

Fig. 4. PDLSC and iPSC-MSC like cells supress effector T-cells. CD3þ T-cells
were stimulated with PMA/Ionomycin and co-cultured with PDLSC or PDLSC-
iPSC-MSC like cells for 3 days, after which time the proportion of various CD4þ
T-cell populations were assessed by flow cytometric analysis.
(A) Representative histogram plots of CD45RA and CD197 cell surface
staining on stimulated T-cells alone or in the presence of PDL cells or iPSC-MSC
gated on the CD3þCD4þ population. (B) The proportion of CD45RAþ CD197�

effector cells present within the CD3þCD4þ T-cell population. Values represent
mean % fluorescence SD, n¼ 6–7 donors (� ¼ P<0.05 as determined by
one-way ANOVA with Turkey0s multiple comparisons).

Fig. 5. PDLSC and iPSC-MSC like cells supress helper T-cells. CD3þ T-cells
were stimulated with PMA/Ionomycin and co-cultured with PDLSC or PDLSC-
iPSC-MSC like cells for 3 days, after which time the proportion of various CD4þ
T-cell populations were assessed by flow cytometric analysis. (A)
Representative histogram plots of CD4 and IFNg, IL-4, or IL-17 cell surface
staining on stimulated T-cells alone or in the presence of PDL cells or iPSC-MSC
gated on the CD3þ population. (B) The proportion of Th1 (CD4þIFNgþ), Th2
(CD4þIL-4þ), and Th17 (CD4þIL-17þ) cells present within the CD3þ T-cell
population. Values represent mean percent fluorescence� SD, n¼ 6–7 donors
(� ¼ P< 0.05 as determined by one-way ANOVA with Turkey0s multiple
comparisons).
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demonstrated the capacity to suppress activated PBMNC through
direct cell–cell interactions in co-cultures and through cell contact-
independent mechanisms in transwell conditions. While the two
different iPSC lines assessed displayed no significant differences in

their ability to suppress allogenic PBMNC proliferation compared to
one another, some variability between different iPSC-MSC lines was
observed. These data concur with our previous findings demonstrat-
ing that the induction of somatic cells to iPSC and subsequent
differentiation to MSC-like populations [Hynes et al., 2014], has
varying effects on their functional properties. Similarly, other
studies have also shown that the differences in the immunomodula-
tory properties between various iPSC-MSC lines may be attributed to
the tissue of origin [Polo et al., 2010]. Of note, direct comparisons
between PDL- and GF-derived iPSC-MSC with primary PDL and GF
fibroblasts, respectively [Wada et al., 2009], suggested that the
conversion of primary dental fibroblasts into iPSC lines followed by
induction into iPSC-MSC had no major consequences on the
immunosuppressive properties of the re-derived MSC populations.

The present study demonstrated that the suppression of PBMNC
proliferation by iPSC-MSC and primary PDL cells and GF was not
due to an increase in lymphocyte apoptosis, but rather through the
inhibition of activated PBMNC cell division, as we and others have
previously reported for different primary MSC-like populations
[Glennie et al., 2005; Wada et al., 2009; Fu et al., 2012]. These
findings suggest the involvement of other mechanisms at play,
where MSC-like populations have been found to modulate immune
cells by various mechanisms, including secretion of different
cytokines and soluble factors [Di Nicola et al., 2002; Tse et al.,
2003; Meisel et al., 2004; Beyth et al., 2005; Jiang et al., 2005; Wada
et al., 2009; Wada et al., 2013; Xishan et al., 2013; Sivanathan et al.,
2014], to suppress the proliferation of B cells and T cells, inhibit
maturation of monocytes, and induce the generation of T regulatory
cell andM2macrophages [Rasmusson, 2006; Nauta and Fibbe, 2007;
Nguyen et al., 2013]. Previous reports suggested that MSC-like
populations derived from pluripotent populations use similar
cytokines and soluble factors as bone marrow derived MSC to
suppress T lymphocyte proliferation in allogenic mixed lymphocytes
reaction assays [Fu et al., 2015; Schnabel et al., 2014]. As expected,
IDO1 transcript levels were upregulated in the different iPSC-MSC,
PDL and GF cells albeit at varying levels. Similar trends of
upregulated IL6 transcript, over a range of gene expression levels,
were identified for the majority of iPSC-MSC populations and
primary fibroblasts under the two co-culture conditions. These data
imply that IDO-1 and IL-6 may be common factors utilized by
different mesenchymal cell populations to induce their immuno-
modulatory affects. While TGFB1 gene expression patterns were
found to increase in the various iPSC-MSC populations and primary
fibroblasts under transwell conditions, differential gene expression
levels were observed in direct co-cultures with activated PBMNC.
Therefore, different mechanisms are likely to dictate the efficiency of
immunosuppression exhibited by the different iPSC-MSC and
primary fibroblasts during direct cell-cell contact or distally, as
we have previously reported between BMSC and skin fibroblasts
[Wada et al., 2011a]. Whilst the few factors examined in the present
study present a limited repertoire of the many mechanisms utilized
by immunomodulatory cells, these analyses support the notion that
iPSC-MSC and primary fibroblasts, modulate a cocktail of different
pro- and anti-inflammatory cytokines, together with soluble factors
to regulate different immune cell populations [Ranganath et al.,
2012; Ankrum et al., 2014].

Fig. 6. PDLSC and iPSC-MSC like cells induce regulatory T-cells. CD3þ T-cells
were stimulated with PHA and co-cultured with PDLSC or PDLSC-iPSC-MSC like
cells for 5 days, after which time the proportion of various CD4þ T-cell populations
were assessed by flow cytometric analysis. (A) Representative histogram plots of
CD4 and Foxp3expression on stimulated T-cells alone or in thepresenceof PDL cells
or iPSC-MSC gated on the CD3þ population, and CD25 bright and CD127 low
population gated on CD4þFoxP3þ cells. (B) Proportion of Tregs in unstimulated,
stimulated T cells alone or co-cultured with PDLSC or their iPSC-MSC. Values
represent mean percent fluorescence� SD, n¼ 3–4 donors (� ¼ P<0.05 as
determined by one-way ANOVA with Turkey0s multiple comparisons).

JOURNAL OF CELLULAR BIOCHEMISTRY IMMUNOMODULATORY PROPERTIES OF iPSC-MSC 7



In the present study, PDL derived iPSC-MSC demonstrated the
ability to significantly suppress effector T-cells and Th1/Th2 cells,
and had a moderate affect on TH17 cell proliferation, compared to
primary PDL cells. Moreover, PDL derived iPSC-MSC exhibited a
moderate capacity to stimulate the proliferation of Treg cells, via
factors such as IDO and TGFb, previously shown to be a key feature
of primary MSC populations [Sivanathan et al., 2015]. Therefore,
variations in the immune regulatory mechanisms used for each
mesenchymal cell type could influence the overall immune/
inflammatory response on different immune cell types and their
subsets [Bettelli et al., 2008], that may ultimately impact on the
therapeutic outcome for specific autoimmune/inflammatory based
diseases [O0Connor et al., 2009].

With the emerging interest in the use of mesenchymal stem cell-
like populations as potential therapies for immunological diseases, a
stable and reliable source of stem cells capable of modulating the
immune system would be highly beneficial [Klyushnenkova et al.,
2005]. MSC derived from different pluripotent stem cells have shown
promising results in potent immounomodulatory and therapeutic
properties [Fu et al., 2015], and in some instances superior to the
immunomodulatory properties of primary bone marrow derived
MSC in vitro [Schnabel et al., 2014] and in vivo [Wang et al., 2014].
Published studies utilizing iPSC-MSC in pre-clinical animal models
have also supported the immunomodulatory potential for these cells
as treatment for multiple diseases including, periodontal disease
[Hynes et al., 2013] myocardial infarction [Miao et al., 2014], lupus
nephritis [Kimbrel et al., 2014], multiple sclerosis [Wang et al.,
2014], and allergic airway inflammation [Sun et al., 2012]. Although
previous studies have suggested the possibility of immunogenicity of
iPSC-derived cells due to the presence of major histocompatibility
complex (MHC) antigen class I expression [Okita et al., 2011], other
studies have failed to demonstrate any significant immunogenicity
affect [Liu et al., 2013; Schnabel et al., 2014]. This is probably due to
a lack of expression of immune helper antigen such as HLA-DR (MHC
Class II), CD40, CD80, and CD86 by different MSC-populations
[Wada et al., 2009], including the PDL and GF derived iPSC-MSC
used in this study (data not shown), which did express HLA-ABC
class1 antigen akin to primary MSC. Other studies have proposed
that the establishment of aMHC-typed bank of pluripotent stem cells
may service a wide range of clinical indications as an alternative
source of therapeutic grade stem cells [Tsuji et al., 2010], but may
only be applicable to homogenous populations.

In conclusion, our results suggest that different tissue sources of iPSC-
MSC may be useful as a potential alternative source to MSC-like
populations for future clinical use in therapeutic applications because of
their comparable immunosuppressive properties. Further elucidation of
immunomodulatorypropertiesof iPSC-MSCand their immunogenicity is
required to determine the safety and efficacy of these populations for
different clinical indications using pre-clinical animal models.
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