8 research outputs found

    Volatile anesthetics reduce invasion of colorectal cancer cells through down-regulation of matrix metalloproteinase-9

    Full text link
    BACKGROUND: Invasion of extracellular matrix is a hallmark of malignant tumors. Clamping maneuvers during cancer surgery reduce blood loss, but trigger reperfusion injury (RI). RI increases cancer recurrence in the reperfused organ through up-regulation of matrix metalloproteinase-9 (MMP-9). Interleukin-8 is an important cytokine in RI promoting accumulation of neutrophils, a major source of MMP-9. Volatile anesthetics were demonstrated to reduce RI. We hypothesized that these anesthetics might attenuate MMP-9 up-regulation and consequently tumor cell invasion in RI. METHODS: Isolated human neutrophils (n = 6) were preconditioned with sevoflurane or desflurane, followed by stimulation with interleukin-8, phorbol myristate acetate, or chemokine CXC-ligand 1 (CXCL1) to differentiate intracellular pathways. MMP-9 release and activity were quantified by enzyme-linked immunosorbent assay and zymography, respectively. CXC-receptor-2 (CXCR2) expression and phosphorylation of extracellular signal-regulated kinases 1/2 were assessed by flow cytometry. The impact of MMP-9 on the invasion of neutrophils and MC-38 colon cancer cells was assessed using Matrigel-coated filters (n = 6). RESULTS: Preconditioning reduced interleukin-8-induced MMP-9-release by 41% (±13, 5%, sevoflurane) and 40% (±13%, desflurane). This was also evident following stimulation of CXCR2 with CXCL1. No impact on phosphorylation of extracellular signal-regulated kinases 1/2 and MMP-9 release was observed with receptor-independent stimulation of protein kinase C with phorbol myristate acetate. Preconditioning reduced transmigration of neutrophils and MC-38 tumor cells to baseline levels. DISCUSSION: Volatile anesthetics impair neutrophil MMP-9 release and interfere with pathways downstream of CXCR2, but upstream of protein kinase C. Through down-regulation of MMP-9, volatile anesthetics decrease Matrigel breakdown and reduce subsequent migration of cancer cells in vitro

    Increased acetylation of lysine 317/320 of p53 caused by BCR-ABL protects from cytoplasmic translocation of p53 and mitochondria-dependent apoptosis in response to DNA damage

    No full text
    Chronic myeloid leukemia (CML) is a disorder of hematopoietic stem cells caused by the expression of BCR-ABL. Loss of p53 has not been implicated as important for the development of CML. Mutations in p53 protein are infrequent, however they correlate with the disease progression. The absence of p53 mutations does not exclude the possibility that other dysfunctions play an important role in CML pathology. Acetylation represents a very potent posttranslational mechanism regulating p53 stability, transcriptional activity and localization. In this study we have investigated whether the expression of BCR-ABL could influence the acetylation of p53, specifically at lysine 317/320 (K317/K320), which has been shown to regulate nuclear export and transcription-independent apoptotic activity of p53. We found that BCR-ABL expression increases K317 acetylation of p53 and is able to prevent a drop in acetylation observed upon DNA damage, followed by translocation of p53 to the cytoplasm and by Bax activation. We have shown that this site plays a crucial role in the regulation of p53 localization and p53-dependent, Bax-mediated apoptosis. Our study presents a novel BCR-ABL-dependent mechanism protecting from DNA-damage-induced cell death. It can, in addition to already known mechanisms, explain the resistance to p53-dependent apoptosis observed in CML cells expressing wt p53. We propose that the acetyltransferases regulating the p53 acetylation could be an interesting and potent target for therapeutic intervention

    Increased acetylation of lysine 317/320 of p53 caused by BCR-ABL protects from cytoplasmic translocation of p53 and mitochondria-dependent apoptosis in response to DNA damage

    No full text
    Chronic myeloid leukemia (CML) is a disorder of hematopoietic stem cells caused by the expression of BCR-ABL. Loss of p53 has not been implicated as important for the development of CML. Mutations in p53 protein are infrequent, however they correlate with the disease progression. The absence of p53 mutations does not exclude the possibility that other dysfunctions play an important role in CML pathology. Acetylation represents a very potent posttranslational mechanism regulating p53 stability, transcriptional activity and localization. In this study we have investigated whether the expression of BCR-ABL could influence the acetylation of p53, specifically at lysine 317/320 (K317/K320), which has been shown to regulate nuclear export and transcription-independent apoptotic activity of p53. We found that BCR-ABL expression increases K317 acetylation of p53 and is able to prevent a drop in acetylation observed upon DNA damage, followed by translocation of p53 to the cytoplasm and by Bax activation. We have shown that this site plays a crucial role in the regulation of p53 localization and p53-dependent, Bax-mediated apoptosis. Our study presents a novel BCR-ABL-dependent mechanism protecting from DNA-damage-induced cell death. It can, in addition to already known mechanisms, explain the resistance to p53-dependent apoptosis observed in CML cells expressing wt p53. We propose that the acetyltransferases regulating the p53 acetylation could be an interesting and potent target for therapeutic intervention

    Downregulation of BRCA1 protein in BCR-ABL1 leukemia cells depends on stress-triggered TIAR-mediated suppression of translation

    No full text
    <div><p>BRCA1 tumor suppressor regulates crucial cellular processes involved in DNA damage repair and cell cycle control. We showed that expression of BCR-ABL1 correlates with decreased level of BRCA1 protein, which promoted aberrant mitoses and aneuploidy as well as altered DNA damage response. Using polysome profiling and luciferase-BRCA1 3’UTR reporter system here we demonstrate that downregulation of BRCA1 protein in CML is caused by inhibition of BRCA1 mRNA translation, but not by increased protein degradation or reduction of mRNA level and half-life. We investigated 2 mRNA-binding proteins – HuR and TIAR showing specificity to AU-Rich Element (ARE) sites in 3’UTR of mRNA. BCR-ABL1 promoted cytosolic localization of TIAR and HuR, their binding to BRCA1 mRNA and formation of the TIAR-HuR complex. HuR protein positively regulated BRCA1 mRNA stability and translation, conversely TIAR negatively regulated BRCA1 translation and was found localized predominantly in the cytosolic stress granules in CML cells. TIAR-dependent downregulation of BRCA1 protein level was a result of ER stress, which is activated in BCR-ABL1 expressing cells, as we previously shown. Silencing of TIAR in CML cells strongly elevated BRCA1 level. Altogether, we determined that TIAR-mediated repression of BRCA1 mRNA translation is responsible for downregulation of BRCA1 protein level in BCR-ABL1 –positive leukemia cells. This mechanism may contribute to genomic instability and provide justification for targeting PARP1 and/or RAD52 to induce synthetic lethality in “BRCAness” CML and BCR-ABL1 –positive ALL cells.</p></div
    corecore