4 research outputs found

    Metrology Arrangement for Measuring the Positions of Mirrors of a Submillimeter Telescope

    Get PDF
    The position of the secondary mirror of a submillimeter telescope with respect to the primary mirror needs to be known .0.03 mm in three dimensions. At the time of this reporting, no convenient, reasonably priced arrangement that offers this capability exists. The solution proposed here relies on measurement devices developed and deployed for the GeoSAR mission, and later adapted for the ISAT (Innovative Space Based Radar Antenna Technology) demonstration. The measurement arrangement consists of four metrology heads, located on an optical bench, attached to the secondary mirror. Each metrology head has a dedicated target located at the edge of the primary mirror. One laser beam, launched from the head and returned by the target, is used to measure distance. Another beam, launched from a beacon on the target, is monitored by the metrology head and generates a measurement of the target position in the plane perpendicular to the laser beam. A 100-MHz modulation is carried by a collimated laser beam. The relevant wavelength is the RF one, 3 m, divided by two, because the light carries it to the target and back. The phase change due to travel to the target and back is measured by timing the zero-crossing of the RF modulation, using a 100-MHz clock. In order to obtain good resolution, the 100-MHz modulation signal is down-converted to 1 kHz. Then, the phase change corresponding to the round-trip to the target is carried by a 1-kHz signal. Since the 100-MHz clock beats 100,000 times during one period of the 1-kHz signal, the least-significant-bit (LSB) resolution is LSB = 0.015 mm

    Closed loop fiber optic rotation sensor

    Get PDF
    An improved optical gyroscope is provided, of the type that passes two light components in opposite directions through an optic fiber coil, and which adds a small variable frequency to one of the light components to cancel the phase shift due to rotation of the coil. The amount of coil rotation from an initial orientation, is accurately determined by combining the two light components, one of which has a slightly increased frequency, to develop beats that each represent a predetermined angle of rotation. The direction of rotation is obtained by combining the two light components on a photodetector, intermittently phase shifting a single light component by 90 deg and comparing the direction of change of photodetector output (+ or -) caused by the 90 deg shift, with the slope (+ or -) of the photodetector output at about the same time, when there is a 90 deg shift

    Silicon bulk micromachined, symmetric, degenerate vibratorygyroscope, accelerometer and sensor and method for using the same

    Get PDF
    When embodied in a microgyroscope, the invention is comprised of a silicon, four-leaf clover structure with a post attached to the center. The whole structure is suspended by four silicon cantilevers or springs. The device is electrostatically actuated and capacitively detects Coriolis induced motions of the leaves of the leaf clover structure. In the case where the post is not symmetric with the plane of the clover leaves, the device can is usable as an accelerometer. If the post is provided in the shape of a dumb bell or an asymmetric post, the center of gravity is moved out of the plane of clover leaf structure and a hybrid device is provided. When the clover leaf structure is used without a center mass, it performs as a high Q resonator usable as a sensor of any physical phenomena which can be coupled to the resonant performance

    Bibliography on quantum logics and related structures

    No full text
    corecore