78 research outputs found

    Multiannual Seafloor Dynamics around a Subtidal Rocky Reef Habitat in the North Sea

    Get PDF
    Rocky reefs provide complex structures in the otherwise largely sand-dominated coastal North Sea. Therefore, these reefs are highly important natural habitats for the functioning of coastal ecosystems, as they provide shelter, refuge and nursery grounds for various mobile and sessile species. In the North Sea, the spatial distribution of these habitats has been intensively investigated over recent years. However, these studies generally provide static accounts of the current state of these reef systems, but limited data exist on the temporal variations in sediment dynamics at and around natural rocky reefs. In this study, we provide observations from a multiannual time series of hydroacoustic seafloor surveys conducted at an isolated rocky reef in the North Sea. We use multibeam bathymetry and side-scan sonar backscatter data in combination with video observations, sediment sampling, and sub-bottom profiler data to assess the long-term variations of the rocky reef system. The reef is located in water depths between 11 and 17 m with an areal extent of ~0.5 km2 and is surrounded by mobile sands. The topography of the rocky reef appears to create a distinct hydrodynamic system that permits mobile sands to settle or move into bathymetrical deeper parts of the reef. Our results suggest a very dynamic system surrounding the reef with large scale scouring, sediment reworking and transport, while the shallower central part of the reef remains stable over time. We demonstrate the importance of hydrodynamics and current scouring around reefs for the local variability in seafloor properties over time. These small-scale dynamics are likewise reflected in the spatial distribution of sessile species, which are less abundant in proximity to mobile sands. The hydroacoustic mapping and monitoring of seafloor dynamics at higher spatial and temporal resolutions presents an important future direction in the study of valuable coastal habitats

    DAM pilot project: Exclusion of bottom trawl fishery in marine protected areas of the German EEZ (North Sea) - DAM MPA Geo 1, Cruise No. HE588, October 24 - November 4, 2021, Bremerhaven (Germany) - Bremerhaven (Germany)

    Get PDF
    During HE588, data were collected in five research areas in the south-eastern part of the German Bight as part of the DAM Pilotmission on the exclusion of mobile bottom-contact fishing in the North Sea (www.mgf-nordsee.de). The cruise started on October 24, 2021, and had a duration of twelve days at sea. The conducted tasks consisted of seafloor mapping with hydroacoustic devices, multicoring and grab sampling from the seafloor surface, lander deployments for the study of current characteristics, and video and diving surveys of benthic fauna. Despite the unstable weather conditions, all scientific tasks could be conducted successfully within the allocated time

    Seafloor monitoring west of Helgoland (German Bight, North Sea) using the acoustic ground discrimination system RoxAnn

    Get PDF
    Marine habitats of shelf seas are in constant dynam- ic change and therefore need regular assessment particularly in areas of special interest. In this study, the single-beam acoustic ground discrimination system RoxAnn served to as- sess seafloor hardness and roughness, and combine these pa- rameters into one variable expressed as RGB (red green blue) color code followed by k-means fuzzy cluster analysis (FCA). The data were collected at a monitoring site west of the island of Helgoland (German Bight, SE North Sea) in the course of four surveys between September 2011 and November 2014. The study area has complex characteristics varying from out- cropping bedrock to sandy and muddy sectors with mostly gradual transitions. RoxAnn data enabled to discriminate all seafloor types that were suggested by ground-truth informa- tion (seafloor samples, video). The area appears to be quite stable overall; sediment import (including fluid mud) was de- tected only from the NW. Although hard substrates (boulders, bedrock) are clearly identified, the signal can be modified by inclination and biocover. Manually, six RoxAnn zones were identified; for the FCA, only three classes are suggested. The latter classification based on ‘hard’ boundaries would sufficefor stakeholder issues, but the former classification based on ‘soft’ boundaries is preferred to meet state-of-the-art scientific objectives

    Historical anthropogenic heavy metal input to the south-eastern North Sea

    Get PDF
    The Helgoland Mud Area (HMA) in the German Bight, covering an area of approximately 500 km2, is one of a few depocentres for finer sediments in the North Sea. Radiocarbon and 210Pb analyses revealed continuous sedimentation over the last several centuries. Zinc (Zn) and lead (Pb) contents in the sediments show a distinct increase towards the youngest most sediments with the thickness of the heavy metal enriched sediments ranging from 15 to 103 cm. Stratigraphic data indicate that the onset of heavy metal enrichment is diachronous progressing north-westward over the depocentre, paralleled by a decrease in the thickness of the enriched layer. Beginning already during medieval times, the enhanced input of Zn and Pb seemingly is related to silver and zinc mining in the Harz Mountains and the Erzgebirge, well-known mining areas since the Bronze Age. Both regions are directly connected to the HMA by the Elbe and Weser rivers. Zn and Pb enrichment began in the south-eastern HMA and progressed subsequently with an average of 10 m per year north-westward, most likely triggered by variations in river discharge and by the hydrodynamic setting. Quantitative assessments of the Zn and Pb content in the sediments suggest that since the onset of enhanced Zn and Pb deposition, the anthropic Zn and Pb input in the HMA amounts to ~ 12,000 t and ~ 4000 t, respectively

    Abrupt emergence of a large pockmark field in the German Bight, southeastern North Sea

    Get PDF
    A series of multibeam bathymetry surveys revealed the emergence of a large pockmark field in the southeastern North Sea. Covering an area of around 915 km2, up to 1,200 pockmarks per square kilometer have been identified. The time of emergence can be confined to 3 months in autumn 2015, suggesting a very dynamic genesis. The gas source and the trigger for the simultaneous outbreak remain speculative. Subseafloor structures and high methane concentrations of up to 30 mmol/l in sediment pore water samples suggest a source of shallow biogenic methane from the decomposition of post-glacial deposits in a paleo river valley. Storm waves are suggested as the final trigger for the eruption of the gas. Due to the shallow water depths and energetic conditions at the presumed time of eruption, a large fraction of the released gas must have been emitted to the atmosphere. Conservative estimates amount to 5 kt of methane, equivalent to 67% of the annual release from the entire North Sea. These observations most probably describe a reoccurring phenomenon in shallow shelf seas, which may have been overlooked before because of the transient nature of shallow water bedforms and technology limitations of high resolution bathymetric mapping
    • 

    corecore