6 research outputs found

    Adult liver progenitor cells for treating non-alcoholic fatty liver disease

    No full text
    The invention relates to the use of a composition comprising adult human liver-derived progenitor cells, such as heterologous human adult liver-derived progenitor cells (HHALPC), for the treatment of a patient having nonalcoholic fatty liver disease (NAFLD), such as non-alcoholic fatty liver (NAFL)or non-alcoholic steatohepatitis (NASH), or wherein the patient is at risk of developing NASH. The treatment comprises a step of administering to said patient an amount of said composition which comprises a dose of 0.25 to 2.5 million said progenitor cells per kg body weight; wherein the composition is substantially free of an effective amount of an anticoagulant, and wherein the patient does not receive any co-treatment with an anticoagulant

    Adult liver progenitor cells for treating acute-onchronic liver failure

    No full text
    The invention relates to the use of a composition comprising human adult liver-derived progenitor cells, such as heterologous human adult liver-derived progenitor cells (HHALPC), for the treatment of a patient who has developed acute-on-chronic liver failure (ACLF) or is at risk of developing ACLF, wherein the treatment comprises a step of administering to said patient an amount of said composition which comprises a dose of 0.25 to 2.5 million said progenitor cells per kg body weight; wherein the composition is substantially free of an effective amount of an anticoagulant, and wherein the patient does not receive any co-treatment with an anticoagulant

    A phase II study of human allogeneic liver-derived progenitor cell therapy for acute-on-chronic liver failure and acute decompensation

    Get PDF
    Background & Aims: Human allogeneic liver-derived progenitor cells (HALPC, HepaStem®; Promethera Biosciences, Mont-Saint-Guibert, Belgium) are an advanced therapy medicinal product that could potentially alleviate systemic inflammation and ameliorate liver function in patients with acute-on-chronic liver failure (ACLF) or acute decompensation of cirrhosis (AD). Methods: This open-label phase II study was conducted in 9 centres in Belgium, Spain, and Bulgaria between 2016 and 2019. The primary objective was to assess the safety of HALPC therapy up to Day 28 and the secondary objectives were to assess its safety and preliminary efficacy up to Month 3. Results: The 24 treated patients (mean age: 51 years) were mostly male with an alcoholic cirrhosis. On pre-infusion Day 1, 15 patients had ACLF and 9 patients had AD. Two of the 3 initial patients treated with high HALPC doses (∼5×106 cells/kg body weight [BW]) had severe adverse bleeding events attributed to treatment. In 21 patients subsequently treated with lower HALPC doses (0.6 or 1.2×106 cells/kg BW, 1 or 2 times 7 days apart), no serious adverse events were related to treatment, and the other adverse events were in line with those expected in patients with ACLF and AD. Overall, markers of systemic inflammation and altered liver function decreased gradually for the surviving patients. The Day-28 and Month-3 survival rates were 83% (20/24) and 71% (17/24), and at Month 3, no patient had ACLF. Conclusions: The treatment of patients with ACLF or AD with up to 2 doses of 1.2×106 HALPC/kg BW appeared safe. The results of this study support the initiation of a proof-of-concept study in a larger cohort of patients with ACLF to further confirm the safety and evaluate the efficacy of HALPC therapy. Clinical Trials Registration: EudraCT 2016-001177-32. Lay summary: Patients with liver cirrhosis may suffer from the rapid onset of organ failure or multiple organ failure associated with a high risk of death in the short term. This clinical study of 24 patients suggests that an advanced therapy based on the intravenous infusion of low doses of human allogeneic liver-derived progenitor cells is safe and supports the next phase of clinical development of this type of therapy

    Identification of oncolytic vaccinia restriction factors in canine high-grade mammary tumor cells using single-cell transcriptomics.

    No full text
    Mammary carcinoma, including triple-negative breast carcinomas (TNBC) are tumor-types for which human and canine pathologies are closely related at the molecular level. The efficacy of an oncolytic vaccinia virus (VV) was compared in low-passage primary carcinoma cells from TNBC versus non-TNBC. Non-TNBC cells were 28 fold more sensitive to VV than TNBC cells in which VV replication is impaired. Single-cell RNA-seq performed on two different TNBC cell samples, infected or not with VV, highlighted three distinct populations: naïve cells, bystander cells, defined as cells exposed to the virus but not infected and infected cells. The transcriptomes of these three populations showed striking variations in the modulation of pathways regulated by cytokines and growth factors. We hypothesized that the pool of genes expressed in the bystander populations was enriched in antiviral genes. Bioinformatic analysis suggested that the reduced activity of the virus was associated with a higher mesenchymal status of the cells. In addition, we demonstrated experimentally that high expression of one gene, DDIT4, is detrimental to VV production. Considering that DDIT4 is associated with a poor prognosis in various cancers including TNBC, our data highlight DDIT4 as a candidate resistance marker for oncolytic poxvirus therapy. This information could be used to design new generations of oncolytic poxviruses. Beyond the field of gene therapy, this study demonstrates that single-cell transcriptomics can be used to identify cellular factors influencing viral replication
    corecore