15,676 research outputs found
Dietary Nutrient Intake and Obesity Prevalence Among Native American Adolescents
The prevalence of obesity among adolescent minority populations has been long recognized, but little research has been done on Native Americans adolescents. Using anthropometric measurements and dietary assessments, the findings within each study have shown to obtain baseline measures to determine the prevalence of obesity within the Sherman Indian High School's Native American adolescent population. Data of each assessment appear to be of use for predicting obesity and creating effective future interventions. Compiling data using the Harvard School of Public Health Youth/Adolescent Questionnaire (HSPH YAQ), a semi-quantitative food frequency questionnaire allowed significant data to be found between normal and obese weight students. Utilizing each finding allows more effective ways of targeting and reversing the inclining rate of obesity among Native American adolescents. Results show that antioxidants being examined on such as vitamin E and lycopene are beneficial in lowering the obesity rate among Native American adolescents. Levels of fiber, thiamin and folate consumption was significantly lower among the obese population in Sherman Indian High School's Native American adolescents. Moreover, dietary mineral intake was shown to be lower among obese Native American adolescents comparing with the normal weight group. The results suggested that dietary consumption of these nutrients might correlate and predict obesity and lead to the development of effective interventions for Native Americans. This study also found the effects of total fiber and vitamin B in diets with lifestyle intervention in prediabetic adults, showing that total fiber intake among the normal weight students is significantly higher than obese students, indicating that fiber and vitamin profile could be important determinants of the effect of dietary intervention
Hitchhiking transport in quasi-one-dimensional systems
In the conventional theory of hopping transport the positions of localized
electronic states are assumed to be fixed, and thermal fluctuations of atoms
enter the theory only through the notion of phonons. On the other hand, in 1D
and 2D lattices, where fluctuations prevent formation of long-range order, the
motion of atoms has the character of the large scale diffusion. In this case
the picture of static localized sites may be inadequate. We argue that for a
certain range of parameters, hopping of charge carriers among localization
sites in a network of 1D chains is a much slower process than diffusion of the
sites themselves. Then the carriers move through the network transported along
the chains by mobile localization sites jumping occasionally between the
chains. This mechanism may result in temperature independent mobility and
frequency dependence similar to that for conventional hopping.Comment: a few typos correcte
The correlation potential in density functional theory at the GW-level: spherical atoms
As part of a project to obtain better optical response functions for nano
materials and other systems with strong excitonic effects we here calculate the
exchange-correlation (XC) potential of density-functional theory (DFT) at a
level of approximation which corresponds to the dynamically- screened-exchange
or GW approximation. In this process we have designed a new numerical method
based on cubic splines which appears to be superior to other techniques
previously applied to the "inverse engineering problem" of DFT, i.e., the
problem of finding an XC potential from a known particle density. The
potentials we obtain do not suffer from unphysical ripple and have, to within a
reasonable accuracy, the correct asymptotic tails outside localized systems.
The XC potential is an important ingredient in finding the particle-conserving
excitation energies in atoms and molecules and our potentials perform better in
this regard as compared to the LDA potential, potentials from GGA:s, and a DFT
potential based on MP2 theory.Comment: 13 pages, 9 figure
A simple remark on a flat projective morphism with a Calabi-Yau fiber
If a K3 surface is a fiber of a flat projective morphisms over a connected
noetherian scheme over the complex number field, then any smooth connected
fiber is also a K3 surface. Observing this, Professor Nam-Hoon Lee asked if the
same is true for higher dimensional Calabi-Yau fibers. We shall give an
explicit negative answer to his question as well as a proof of his initial
observation.Comment: 8 pages, main theorem is generalized, one more remark is added,
mis-calculation and typos are corrected etc
Developmental change in numerical estimation
Mental representations of numerical magnitude are commonly thought to undergo discontinuous change over development in the form of a “representational shift.” This idea stems from an apparent categorical shift from logarithmic to linear patterns of numerical estimation on tasks that involve translating between numerical magnitudes and spatial positions (such as number-line estimation). However, the observed patterns of performance are broadly consistent with a fundamentally different view, based on psychophysical modeling of proportion estimation, that explains the data without appealing to discontinuous change in mental representations of numerical magnitude. The present study assessed these 2 theories\u27 abilities to account for the development of numerical estimation in 5- through 10-year-olds. The proportional account explained estimation patterns better than the logarithmic-to-linear-shift account for all age groups, at both group and individual levels. These findings contribute to our understanding of the nature and development of the mental representation of number and have more general implications for theories of cognitive developmental change
A simple, efficient, and general treatment of the singularities in Hartree-Fock and exact-exchange Kohn-Sham methods for solids
We present a general scheme for treating the integrable singular terms within
exact exchange (EXX) Kohn-Sham or Hartree-Fock (HF) methods for periodic
solids. We show that the singularity corrections for treating these
divergencies depend only on the total number and the positions of k-points and
on the lattice vectors, in particular the unit cell volume, but not on the
particular positions of atoms within the unit cell. The method proposed here to
treat the singularities constitutes a stable, simple to implement, and general
scheme that can be applied to systems with arbitrary lattice parameters within
either the EXX Kohn-Sham or the HF formalism. We apply the singularity
correction to a typical symmetric structure, diamond, and to a more general
structure, trans-polyacetylene. We consider the effect of the singularity
corrections on volume optimisations and k-point convergence. While the
singularity corrections clearly depends on the total number of k-points, it
exhibits a remarkably small dependence upon the choice of the specific
arrangement of the k-points.Comment: 24 pages, 5 Figures, re-submitted to Phys. Rev. B after revision
Increases in salience of ethnic identity at work: the roles of ethnic assignation and ethnic identification
To better understand how ethnicity is actually experienced within organisations, we examined reported increases in ethnic identity salience at work and responses to such increases. Thirty British black Caribbean graduate employees were interviewed about how and when they experienced their ethnic identity at work. The findings demonstrated that increased salience in ethnic identity was experienced in two key ways: through ‘ethnic assignation’ (a ‘push’ towards ethnic identity) and ‘ethnic identification’ (a ‘pull’ towards ethnic identity). We explore how and when ethnic assignation and ethnic identification occur at work, and their relevance to how workplaces are experienced by this group of minority ethnic employees. The findings suggest the need for further research attention to the dynamic and episodic nature of social identity, including ethnic identity, within organisations, and to the impact of such increases in salience of social identities on behaviour at work
A Study of the Direct-Fitting Method for Measurement of Galaxy Velocity Dispersions
We have measured the central stellar velocity dispersions of 33 nearby spiral
and elliptical galaxies, using a straightforward template-fitting algorithm
operating in the pixel domain. The spectra, obtained with the Double
Spectrograph at Palomar Observatory, cover both the Ca triplet and the Mg b
region, and we present a comparison of the velocity dispersion measurements
from these two spectral regions. Model fits to the Ca triplet region generally
yield good results with little sensitivity to the choice of template star. In
contrast, the Mg b region is more sensitive to template mismatch and to details
of the fitting procedure such as the order of a polynomial used to match the
continuum shape of the template to the object. As a consequence of the
correlation of the [Mg/Fe] ratio with velocity dispersion, it is difficult to
obtain a satisfactory model fit to the Mg b lines and the surrounding Fe blends
simultaneously, particularly for giant elliptical galaxies with large velocity
dispersions. We demonstrate that if the metallicities of the galaxy and
template star are not well matched, then direct template-fitting results are
improved if the Mg b lines themselves are excluded from the fit and the
velocity dispersion is determined from the surrounding weaker lines.Comment: 14 pages. To appear in A
- …