16,084 research outputs found

    No Evidence for [O III] Variability in Mrk 142

    Full text link
    Using archival data from the 2008 Lick AGN Monitoring Project, Zhang & Feng (2016) claimed to find evidence for flux variations in the narrow [O III] emission of the Seyfert 1 galaxy Mrk 142 over a two-month time span. If correct, this would imply a surprisingly compact size for the narrow-line region. We show that the claimed [O III] variations are merely the result of random errors in the overall flux calibration of the spectra. The data do not provide any support for the hypothesis that the [O III] flux was variable during the 2008 monitoring period.Comment: Response to Zhang & Feng 2016, MNRAS Letters, 457, L64 (arXiv:1512.07673). Accepted for publication in MNRAS Letters. 5 pages, 2 figure

    Intermediate-mass Black Holes in Galactic Nuclei

    Get PDF
    We present the first homogeneous sample of intermediate-mass black hole candidates in active galactic nuclei. Starting with broad-line active nuclei from the Sloan Digital Sky Survey, we use the linewidth-luminosity-mass scaling relation to select a sample of 19 galaxies in the mass range M_BH ~ 8 x 10^4 - 10^6 solar masses. In contrast to the local active galaxy population, the host galaxies are ~1 mag fainter than M* and thus are probably late-type systems. The active nuclei are also faint, with M_g ~ -15 to -18 mag, while the bolometric luminosities are close to the Eddington limit. The spectral properties of the sample are compared to the related class of objects known as narrow-line Seyfert 1 galaxies. We discuss the importance of our sample as observational analogues of primordial black holes, contributors to the integrated signal for future gravitational wave experiments, and as a valuable tool in the calibration of the M-sigma relation.Comment: 4 pages, 4 figures. To appear in "The Interplay among Black Holes, Stars and ISM in Galactic Nuclei," Proc. IAU 222 (Gramado, Brazil), eds Th. Storchi Bergmann, L.C. Ho, H.R. Schmit

    Iron Emission in the z=6.4 Quasar SDSS J114816.64+525150.3

    Full text link
    We present near-infrared J and K-band spectra of the z = 6.4 quasar SDSS J114816.64+525150.3 obtained with the NIRSPEC spectrograph at the Keck-II telescope, covering the rest-frame spectral regions surrounding the C IV 1549 and Mg II 2800 emission lines. The iron emission blend at rest wavelength 2900-3000 A is clearly detected and its strength appears nearly indistinguishable from that of typical quasars at lower redshifts. The Fe II / Mg II ratio is also similar to values found for lower-redshift quasars, demonstrating that there is no strong evolution in Fe/alpha broad-line emission ratios even out to z=6.4. In the context of current models for iron enrichment from Type Ia supernovae, this implies that the SN Ia progenitor stars formed at z > 10. We apply the scaling relations of Vestergaard and of McLure & Jarvis to estimate the black hole mass from the widths of the C IV and Mg II emission lines and the ultraviolet continuum luminosity. The derived mass is in the range (2-6)x10^9 solar masses, with an additional uncertainty of a factor of 3 due to the intrinsic scatter in the scaling relations. This result is in agreement with the previous mass estimate of 3x10^9 solar masses by Willott, McLure, & Jarvis, and supports their conclusion that the quasar is radiating close to its Eddington luminosity.Comment: To appear in ApJ Letter

    Stellar Velocity Dispersion and Black Hole Mass in the Blazar Markarian 501

    Get PDF
    The recently discovered correlation between black hole mass and stellar velocity dispersion provides a new method to determine the masses of black holes in active galaxies. We have obtained optical spectra of Markarian 501, a nearby gamma-ray blazar with emission extending to TeV energies. The stellar velocity dispersion of the host galaxy, measured from the calcium triplet lines in a 2"x3.7" aperture, is 372 +/- 18 km/s. If Mrk 501 follows the M-sigma correlation defined for local galaxies, then its central black hole has a mass of (0.9-3.4)x10^9 solar masses. This is significantly larger than some previous estimates for the central mass in Mrk 501 that have been based on models for its nonthermal emission. The host galaxy luminosity implies a black hole of 6x10^8 solar masses, but this is not in severe conflict with the mass derived from the M-sigma relation because the M_BH-L_bulge correlation has a large intrinsic scatter. Using the emission-line luminosity to estimate the bolometric luminosity of the central engine, we find that Mrk 501 radiates at an extremely sub-Eddington level of L/L_Edd ~ 10^-4. Further applications of the M-sigma relation to radio-loud active galactic nuclei may be useful for interpreting unified models and understanding the relationship between radio galaxies and BL Lac objects.Comment: To appear in ApJ Letters. 5 pages, 2 figure

    Model for Cumulative Solar Heavy Ion Energy and Linear Energy Transfer Spectra

    Get PDF
    A probabilistic model of cumulative solar heavy ion energy and LET spectra is developed for spacecraft design applications. Spectra are given as a function of confidence level, mission time period during solar maximum and shielding thickness. It is shown that long-term solar heavy ion fluxes exceed galactic cosmic ray fluxes during solar maximum for shielding levels of interest. Cumulative solar heavy ion fluences should therefore be accounted for in single event effects rate calculations and in the planning of space missions

    Dissecting the Power Sources of Low-Luminosity Emission-Line Galaxy Nuclei via Comparison of HST-STIS and Ground-Based Spectra

    Full text link
    Using a sample of ~100 nearby line-emitting galaxy nuclei, we have built the currently definitive atlas of spectroscopic measurements of H_alpha and neighboring emission lines at subarcsecond scales. We employ these data in a quantitative comparison of the nebular emission in Hubble Space Telescope (HST) and ground-based apertures, which offer an order-of-magnitude difference in contrast, and provide new statistical constraints on the degree to which Transition Objects and low-ionization nuclear emission-line regions (LINERs) are powered by an accreting black hole at <10 pc. We show that while the small-aperture observations clearly resolve the nebular emission, the aperture dependence in the line ratios is generally weak, and this can be explained by gradients in the density of the line-emitting gas: the higher densities in the more nuclear regions potentially flatten the excitation gradients, suppressing the forbidden emission. The Transition Objects show a threefold increase in the incidence of broad H_alpha emission in the high-resolution data, as well as the strongest density gradients, supporting the composite model for these systems as accreting sources surrounded by star-forming activity. The narrow-line LINERs appear to be the weaker counterparts of the Type 1 LINERs, where the low accretion rates cause the disappearance of the broad-line component. The enhanced sensitivity of the HST observations reveals a 30% increase in the incidence of accretion-powered systems at z~0. A comparison of the strength of the broad-line emission detected at different epochs implies potential broad-line variability on a decade-long timescale, with at least a factor of three in amplitude.Comment: 27 pages, 13 figures, 4 tables, accepted for publication in Ap
    • …
    corecore