14,937 research outputs found

    Stellar Velocity Dispersion and Black Hole Mass in the Blazar Markarian 501

    Get PDF
    The recently discovered correlation between black hole mass and stellar velocity dispersion provides a new method to determine the masses of black holes in active galaxies. We have obtained optical spectra of Markarian 501, a nearby gamma-ray blazar with emission extending to TeV energies. The stellar velocity dispersion of the host galaxy, measured from the calcium triplet lines in a 2"x3.7" aperture, is 372 +/- 18 km/s. If Mrk 501 follows the M-sigma correlation defined for local galaxies, then its central black hole has a mass of (0.9-3.4)x10^9 solar masses. This is significantly larger than some previous estimates for the central mass in Mrk 501 that have been based on models for its nonthermal emission. The host galaxy luminosity implies a black hole of 6x10^8 solar masses, but this is not in severe conflict with the mass derived from the M-sigma relation because the M_BH-L_bulge correlation has a large intrinsic scatter. Using the emission-line luminosity to estimate the bolometric luminosity of the central engine, we find that Mrk 501 radiates at an extremely sub-Eddington level of L/L_Edd ~ 10^-4. Further applications of the M-sigma relation to radio-loud active galactic nuclei may be useful for interpreting unified models and understanding the relationship between radio galaxies and BL Lac objects.Comment: To appear in ApJ Letters. 5 pages, 2 figure

    Intermediate-mass Black Holes in Galactic Nuclei

    Get PDF
    We present the first homogeneous sample of intermediate-mass black hole candidates in active galactic nuclei. Starting with broad-line active nuclei from the Sloan Digital Sky Survey, we use the linewidth-luminosity-mass scaling relation to select a sample of 19 galaxies in the mass range M_BH ~ 8 x 10^4 - 10^6 solar masses. In contrast to the local active galaxy population, the host galaxies are ~1 mag fainter than M* and thus are probably late-type systems. The active nuclei are also faint, with M_g ~ -15 to -18 mag, while the bolometric luminosities are close to the Eddington limit. The spectral properties of the sample are compared to the related class of objects known as narrow-line Seyfert 1 galaxies. We discuss the importance of our sample as observational analogues of primordial black holes, contributors to the integrated signal for future gravitational wave experiments, and as a valuable tool in the calibration of the M-sigma relation.Comment: 4 pages, 4 figures. To appear in "The Interplay among Black Holes, Stars and ISM in Galactic Nuclei," Proc. IAU 222 (Gramado, Brazil), eds Th. Storchi Bergmann, L.C. Ho, H.R. Schmit

    Iron Emission in the z=6.4 Quasar SDSS J114816.64+525150.3

    Full text link
    We present near-infrared J and K-band spectra of the z = 6.4 quasar SDSS J114816.64+525150.3 obtained with the NIRSPEC spectrograph at the Keck-II telescope, covering the rest-frame spectral regions surrounding the C IV 1549 and Mg II 2800 emission lines. The iron emission blend at rest wavelength 2900-3000 A is clearly detected and its strength appears nearly indistinguishable from that of typical quasars at lower redshifts. The Fe II / Mg II ratio is also similar to values found for lower-redshift quasars, demonstrating that there is no strong evolution in Fe/alpha broad-line emission ratios even out to z=6.4. In the context of current models for iron enrichment from Type Ia supernovae, this implies that the SN Ia progenitor stars formed at z > 10. We apply the scaling relations of Vestergaard and of McLure & Jarvis to estimate the black hole mass from the widths of the C IV and Mg II emission lines and the ultraviolet continuum luminosity. The derived mass is in the range (2-6)x10^9 solar masses, with an additional uncertainty of a factor of 3 due to the intrinsic scatter in the scaling relations. This result is in agreement with the previous mass estimate of 3x10^9 solar masses by Willott, McLure, & Jarvis, and supports their conclusion that the quasar is radiating close to its Eddington luminosity.Comment: To appear in ApJ Letter

    The M87 Black Hole Mass From Gas-Dynamical Models Of Space Telescope Imaging Spectrograph Observations

    Get PDF
    The supermassive black hole of M87 is one of the most massive black holes known and has been the subject of several stellar and gas-dynamical mass measurements; however, the most recent revision to the stellar-dynamical black hole mass measurement is a factor of about two larger than the previous gas-dynamical determinations. Here, we apply comprehensive gas-dynamical models that include the propagation of emission-line profiles through the telescope and spectrograph optics to new Space Telescope Imaging Spectrograph observations from the Hubble Space Telescope. Unlike the previous gas-dynamical studies of M87, we map out the complete kinematic structure of the emission-line disk within similar to 40 pc from the nucleus, and find that a small amount of velocity dispersion internal to the gas disk is required to match the observed line widths. We examine a scenario in which the intrinsic velocity dispersion provides dynamical support to the disk, and determine that the inferred black hole mass increases by only 6%. Incorporating this effect into the error budget, we ultimately measure a mass of M-BH = (3.5(-0.7)(+0.9)) x 10(9)M circle dot (68% confidence). Our gas-dynamical black hole mass continues to differ from the most recent stellar-dynamical mass by a factor of two, underscoring the need for carrying out more cross-checks between the two main black hole mass measurement methods.NSF Astronomy and Astrophysics Postdoctoral Fellowship 1102845Space Telescope Science Institute 12162NASA NAS 5-26555NSF AST-1108835Astronom

    Feedback In Luminous Obscured Quasars

    Get PDF
    We use spatially resolved long-slit spectroscopy from Magellan to investigate the extent, kinematics, and ionization structure in the narrow-line regions of 15 luminous, obscured quasars with z < 0.5. Increasing the dynamic range in luminosity by an order of magnitude, as well as improving the depth of existing observations by a similar factor, we revisit relations between narrow-line region size and the luminosity and linewidth of the narrow emission lines. We find a slope of 0.22 +/- 0.04 for the power-law relationship between size and luminosity, suggesting that the nebulae are limited by availability of gas to ionize at these luminosities. In fact, we find that the active galactic nucleus is effectively ionizing the interstellar medium over the full extent of the host galaxy. Broad (similar to 300-1000 km s(-1)) linewidths across the galaxies reveal that the gas is kinematically disturbed. Furthermore, the rotation curves and velocity dispersions of the ionized gas remain constant out to large distances, in striking contrast to normal and starburst galaxies. We argue that the gas in the entire host galaxy is significantly disturbed by the central active galactic nucleus. While only similar to 10(7)-10(8) M-circle dot worth of gas are directly observed to be leaving the host galaxies at or above their escape velocities, these estimates are likely lower limits because of the biases in both mass and outflow velocity measurements and may in fact be in accord with expectations of recent feedback models. Additionally, we report the discovery of two dual obscured quasars, one of which is blowing a large-scale (similar to 10 kpc) bubble of ionized gas into the intergalactic medium.NSF AST-0548198Astronom

    Model for Cumulative Solar Heavy Ion Energy and Linear Energy Transfer Spectra

    Get PDF
    A probabilistic model of cumulative solar heavy ion energy and LET spectra is developed for spacecraft design applications. Spectra are given as a function of confidence level, mission time period during solar maximum and shielding thickness. It is shown that long-term solar heavy ion fluxes exceed galactic cosmic ray fluxes during solar maximum for shielding levels of interest. Cumulative solar heavy ion fluences should therefore be accounted for in single event effects rate calculations and in the planning of space missions

    A Stellar Dynamical Mass Measurement of the Black Hole in NGC 3998 from Keck Adaptive Optics Observations

    Get PDF
    We present a new stellar dynamical mass measurement of the black hole in the nearby, S0 galaxy NGC 3998. By combining laser guide star adaptive optics observations obtained with the OH-Suppressing Infrared Imaging Spectrograph on the Keck II telescope with long-slit spectroscopy from the Hubble Space Telescope and the Keck I telescope, we map out the stellar kinematics on both small spatial scales, well within the black hole sphere of influence, and on large scales. We find that the galaxy is rapidly rotating and exhibits a sharp central peak in the velocity dispersion. Using the kinematics and the stellar luminosity density derived from imaging observations, we construct three-integral, orbit-based, triaxial stellar dynamical models. We find the black hole has a mass of M_BH = (8.1_{-1.9}^{+2.0}) x 10^8 M_sun, with an I-band stellar mass-to-light ratio of M/L = 5.0_{-0.4}^{+0.3} M_sun/L_sun (3-sigma uncertainties), and that the intrinsic shape of the galaxy is very round, but oblate. With the work presented here, NGC 3998 is now one of a very small number of galaxies for which both stellar and gas dynamical modeling have been used to measure the mass of the black hole. The stellar dynamical mass is nearly a factor of four larger than the previous gas dynamical black hole mass measurement. Given that this cross-check has so far only been attempted on a few galaxies with mixed results, carrying out similar studies in other objects is essential for quantifying the magnitude and distribution of the cosmic scatter in the black hole mass - host galaxy relations.Comment: 19 pages, 15 figures, accepted for publication in Ap

    High-resolution observation of the Venus dayglow spectrum 1250-1430 angstroms

    Get PDF
    The spectrum of the dayglow of Venus between 1250 and 1430 A was measured in high resolution with the International Ultraviolet Explorer. Seven exposures which were made with the short wavelength camera in the high dispersion mode using the large aperture were combined to give a total exposure time of 309 min. The atomic oxygen lines at 1302.2, 1304.9, 1306.0, and 1355.6 A are present. In addition, the (14,3) and (14,4) bands of the carbon monoxide fourth positive system at 1317 and 1354 A respectively are identified. These bands are compared with synthetic spectra, showing the excitation mechanism to be fluorescent scattering of solar Lyman alpha radiation
    corecore