29 research outputs found

    The clinical spectrum of limb girdle muscular dystrophy. A survey in the Netherlands

    Get PDF
    A cross-sectional study was performed in the Netherlands to define the clinical characteristics of the various subtypes within the broad and heterogeneous entity of limb girdle muscular dystrophy (LGMD). An attempt was made to include all known cases of LGMD in the Netherlands. Out of the reported 200 patients, 105 who fulfilled strictly defined criteria were included. Forty-nine patients, mostly suffering from dystrophinopathies and facioscapulohumeral muscular dystrophy, appeared to be misdiagnosed. Thirty-four cases were sporadic, 42 patients came from autosomal recessive and 29 from autosomal dominant families. The estimated prevalence of LGMD in the Netherlands was at least 8.1 x 10-6. The clinical features of the autosomal recessive and sporadic cases were indistinguishable from those of the autosomal dominant patients, although half hypertrophy was seen more frequently, and the course of the disease was more severe in autosomal recessive and sporadic cases. The pectoralis, iliopsoas and gluteal muscles, hip adductors and hamstrings were the most affected muscles. Distal muscle involvement occurred late in the course of the disease. Facial weakness was a rare phenomenon. The severity of the clinical picture was correlated with a deteriorating lung function. All autosomal dominantly inherited cases showed a mild course, although in two families life-expectancy was reduced because of concomitant cardiac involvement

    A MODEST review

    Get PDF
    We present an account of the state of the art in the fields explored by the research community invested in 'Modeling and Observing DEnse STellar systems'. For this purpose, we take as a basis the activities of the MODEST-17 conference, which was held at Charles University, Prague, in September 2017. Reviewed topics include recent advances in fundamental stellar dynamics, numerical methods for the solution of the gravitational N-body problem, formation and evolution of young and old star clusters and galactic nuclei, their elusive stellar populations, planetary systems, and exotic compact objects, with timely attention to black holes of different classes of mass and their role as sources of gravitational waves. Such a breadth of topics reflects the growing role played by collisional stellar dynamics in numerous areas of modern astrophysics. Indeed, in the next decade, many revolutionary instruments will enable the derivation of positions and velocities of individual stars in the Milky Way and its satellites and will detect signals from a range of astrophysical sources in different portions of the electromagnetic and gravitational spectrum, with an unprecedented sensitivity. On the one hand, this wealth of data will allow us to address a number of long-standing open questions in star cluster studies; on the other hand, many unexpected properties of these systems will come to light, stimulating further progress of our understanding of their formation and evolution.Comment: 42 pages; accepted for publication in 'Computational Astrophysics and Cosmology'. We are much grateful to the organisers of the MODEST-17 conference (Charles University, Prague, September 2017). We acknowledge the input provided by all MODEST-17 participants, and, more generally, by the members of the MODEST communit

    Underlying-event properties in pp and p–Pb collisions at √sNN = 5.02 TeV

    No full text
    We report about the properties of the underlying event measured with ALICE at the LHC in pp and p−Pb collisions at sNN−−−√=5.02 TeV. The event activity, quantified by charged-particle number and summed-pT densities, is measured as a function of the leading-particle transverse momentum (ptrigT). These quantities are studied in three azimuthal-angle regions relative to the leading particle in the event: toward, away, and transverse. Results are presented for three different pT thresholds (0.15, 0.5, and 1 GeV/c) at mid-pseudorapidity (|η|10 GeV/c, whereas for lower ptrigT values the event activity is slightly higher in p−Pb than in pp collisions. The measurements are compared with predictions from the PYTHIA 8 and EPOS LHC Monte Carlo event generators

    Dielectron production at midrapidity at low transverse momentum in peripheral and semi-peripheral Pb–Pb collisions at √sNN = 5.02 TeV

    No full text
    The first measurement of the e+e− pair production at low lepton pair transverse momentum (pT,ee) and low invariant mass (mee) in non-central Pb−Pb collisions at sNN−−−√=5.02 TeV at the LHC is presented. The dielectron production is studied with the ALICE detector at midrapidity (|ηe|<0.8) as a function of invariant mass (0.4≤mee<2.7 GeV/c2) in the 50−70% and 70−90% centrality classes for pT,ee<0.1 GeV/c, and as a function of pT,ee in three mee intervals in the most peripheral Pb−Pb collisions. Below a pT,ee of 0.1 GeV/c, a clear excess of e+e− pairs is found compared to the expectations from known hadronic sources and predictions of thermal radiation from the medium. The mee excess spectra are reproduced, within uncertainties, by different predictions of the photon−photon production of dielectrons, where the photons originate from the extremely strong electromagnetic fields generated by the highly Lorentz-contracted Pb nuclei. Lowest-order quantum electrodynamic (QED) calculations, as well as a model that takes into account the impact-parameter dependence of the average transverse momentum of the photons, also provide a good description of the pT,ee spectra. The measured ⟨p2T,ee⟩−−−−−√ of the excess pT,ee spectrum in peripheral Pb−Pb collisions is found to be comparable to the values observed previously at RHIC in a similar phase-space region

    Underlying-event properties in pp and p–Pb collisions at √sNN = 5.02 TeV

    No full text
    We report about the properties of the underlying event measured with ALICE at the LHC in pp and p−Pb collisions at sNN−−−√=5.02 TeV. The event activity, quantified by charged-particle number and summed-pT densities, is measured as a function of the leading-particle transverse momentum (ptrigT). These quantities are studied in three azimuthal-angle regions relative to the leading particle in the event: toward, away, and transverse. Results are presented for three different pT thresholds (0.15, 0.5, and 1 GeV/c) at mid-pseudorapidity (|η|10 GeV/c, whereas for lower ptrigT values the event activity is slightly higher in p−Pb than in pp collisions. The measurements are compared with predictions from the PYTHIA 8 and EPOS LHC Monte Carlo event generators

    Dielectron production at midrapidity at low transverse momentum in peripheral and semi-peripheral Pb–Pb collisions at √sNN = 5.02 TeV

    No full text
    The first measurement of the e+e− pair production at low lepton pair transverse momentum (pT,ee) and low invariant mass (mee) in non-central Pb−Pb collisions at sNN−−−√=5.02 TeV at the LHC is presented. The dielectron production is studied with the ALICE detector at midrapidity (|ηe|<0.8) as a function of invariant mass (0.4≤mee<2.7 GeV/c2) in the 50−70% and 70−90% centrality classes for pT,ee<0.1 GeV/c, and as a function of pT,ee in three mee intervals in the most peripheral Pb−Pb collisions. Below a pT,ee of 0.1 GeV/c, a clear excess of e+e− pairs is found compared to the expectations from known hadronic sources and predictions of thermal radiation from the medium. The mee excess spectra are reproduced, within uncertainties, by different predictions of the photon−photon production of dielectrons, where the photons originate from the extremely strong electromagnetic fields generated by the highly Lorentz-contracted Pb nuclei. Lowest-order quantum electrodynamic (QED) calculations, as well as a model that takes into account the impact-parameter dependence of the average transverse momentum of the photons, also provide a good description of the pT,ee spectra. The measured ⟨p2T,ee⟩−−−−−√ of the excess pT,ee spectrum in peripheral Pb−Pb collisions is found to be comparable to the values observed previously at RHIC in a similar phase-space region

    Symmetry plane correlations in Pb–Pb collisions at √sNN = 2.76 TeV

    No full text
    A newly developed observable for correlations between symmetry planes, which characterize the direction of the anisotropic emission of produced particles, is measured in Pb-Pb collisions at sNN−−−√=2.76 TeV with ALICE. This so-called Gaussian Estimator allows for the first time the study of these quantities without the influence of correlations between different flow amplitudes. The centrality dependence of various correlations between two, three and four symmetry planes is presented. The ordering of magnitude between these symmetry plane correlations is discussed and the results of the Gaussian Estimator are compared with measurements of previously used estimators. The results utilizing the new estimator lead to significantly smaller correlations than reported by studies using the Scalar Product method. Furthermore, the obtained symmetry plane correlations are compared to state-of-the-art hydrodynamic model calculations for the evolution of heavy-ion collisions. While the model predictions provide a qualitative description of the data, quantitative agreement is not always observed, particularly for correlators with significant non-linear response of the medium to initial state anisotropies of the collision system. As these results provide unique and independent information, their usage in future Bayesian analysis can further constrain our knowledge on the properties of the QCD matter produced in ultrarelativistic heavy-ion collisions

    Dielectron and heavy-quark production in inelastic and high-multiplicity proton–proton collisions at √s = 13 TeV

    No full text
    The measurement of dielectron production is presented as a function of invariant mass and transverse momentum (pT) at midrapidity (|ye| < 0.8) in proton–proton (pp) collisions at a centre-of-mass energy of √s = 13 TeV. The contributions from light-hadron decays are calculated from their measured cross sections in pp collisions at √s = 7 TeV or 13 TeV. The remaining continuum stems from correlated semileptonic decays of heavy-flavour hadrons. Fitting the data with templates from two different MC event generators, PYTHIA and POWHEG, the charm and beauty cross sections at midrapidity are extracted for the first time at this collision energy: dσcc¯/dy|y=0 = 974 ± 138 (stat.) ± 140 (syst.) ± 214(BR) μb and dσbb¯ /dy|y=0 = 79 ± 14 (stat.) ± 11 (syst.) ± 5(BR) μb using PYTHIA simulations and dσcc¯/dy|y=0 = 1417 ± 184 (stat.) ± 204 (syst.) ± 312(BR) μb and dσbb¯ /dy|y=0 = 48 ± 14 (stat.) ± 7 (syst.) ± 3(BR) μb for POWHEG. These values, whose uncertainties are fully correlated between the two generators, are consistent with extrapolations from lower energies. The different results obtained with POWHEG and PYTHIA imply different kinematic correlations of the heavy-quark pairs in these two generators. Furthermore, comparisons of dielectron spectra in inelastic events and in events collected with a trigger on high charged-particle multiplicities are presented in various pT intervals. The differences are consistent with the already measured scaling of light-hadron and open-charm production at high charged-particle multiplicity as a function of pT. Upper limits for the contribution of virtual direct photons are extracted at 90% confidence level and found to be in agreement with pQCD calculations
    corecore