1,826 research outputs found
Mathematical Perceptions: Changing Mindsets in Elementary School Classrooms
In classrooms throughout the country, you can hear students moan about the difficulty in learning mathematics. This senior capstone examines the students’ mindsets about mathematics in Monterey County through the use of literature review, classroom observations, and interview with teachers. The findings reveal that students’ mindsets can be changed over time if teachers have the right tools and appropriate training to help students
Measurement of charmless semileptonic decays of B mesons
complete author list: Bartelt J.; Csorna S.; Egyed Z.; Jain V.; Akerib D.; Barish B.; Chadha M.; Chan S.; Cowen D.; Eigen G.; Miller J.; O'Grady C.; Urheim J.; Weinstein A.; Acosta D.; Athanas M.; Masek G.; Paar H.; Sivertz M.; Bean A.; Gronberg J.; Kutschke R.; Menary S.; Morrison R.; Nakanishi S.; Nelson H.; Nelson T.; Richman J.; Ryd A.; Tajima H.; Schmidt D.; Sperka D.; Witherell M.; Procario M.; Yang S.; Cho K.; Daoudi M.; Ford W.; Johnson D.; Lingel K.; Lohner M.; Rankin P.; Smith J.; Alexander J.; Bebek C.; Berkelman K.; Besson D.; Browder T.; Cassel D.; Cho H.; Coffman D.; Drell P.; Ehrlich R.; Garcia-Sciveres M.; Geiser B.; Gittelman B.; Gray S.; Hartill D.; Heltsley B.; Jones C.; Jones S.; Kandaswamy J.; Katayama N.; Kim P.; Kreinick D.; Ludwig G.; Masui J.; Mevissen J.; Mistry N.; Ng C.; Nordberg E.; Ogg M.; Patterson J.; Peterson D.; Riley D.; Salman S.; Sapper M.; Worden H.; Würthwein F.; Avery P.; Freyberger A.; Rodriguez J.; Stephens R.; Yelton J.; Cinabro D.; Henderson S.; Kinoshita K.; Liu T.; Saulnier M.; Shen F.; Wilson R.; Yamamoto H.; Ong B.; Selen M.; Sadoff A.; Ammar R.; Ball S.; Baringer P.; Coppage D.; Copty N.; Davis R.; Hancock N.; Kelly M.; Kwak N.; Lam H.; Kubota Y.; Lattery M.; Nelson J.; Patton S.; Perticone D.; Poling R.; Savinov V.; Schrenk S.; Wang R.; Alam M.; Kim I.; Nemati B.; O'Neill J.; Severini H.; Sun C.; Zoeller M.; Crawford G.; Daubenmeir M.; Fulton R.; Fujino D.; Gan K.; Honscheid K.; Kagan H.; Kass R.; Lee J.; Malchow R.; Morrow F.; Skovpen Y.; Sung M.; White C.; Whitmore J.; Wilson P.; Butler F.; Fu X.; Kalbfleisch G.; Lambrecht M.; Ross W.; Skubic P.; Snow J.; Wang P.; Wood M.; Bortoletto D.; Brown D.; Fast J.; McIlwain R.; Miao T.; Miller D.; Modesitt M.; Schaffner S.; Shibata E.; Shipsey I.; Wang P.; Battle M.; Ernst J.; Kroha H.; Roberts S.; Sparks K.; Thorndike E.; Wang C.; Chelkov V.; Dominick J.; Sanghera S.; Skwarnicki T.; Stroynowski R.; Volobouev I.; Zadorozhny P.; Artuso M.; He D.; Goldberg M.; Horwitz N.; Kennett R.; Moneti G.; Muheim F.; Mukhin Y.; Playfer S.; Rozen Y.; Stone S.; Thulasidas M.; Vasseur G.; Zhu G.; Bartelt J.; Bartelt J.</p
Characterization of Generalized Haar Spaces
AbstractWe say that a subsetGofC0(T,Rk) is rotation-invariant if {Qg:g∈G{=Gfor anyk×korthogonal matrixQ. LetGbe a rotation-invariant finite-dimensional subspace ofC0(T,Rk) on a connected, locally compact, metric spaceT. We prove thatGis a generalized Haar subspace if and only ifPG(f) is strongly unique of order 2 wheneverPG(f) is a singleton
Error Estimates and Lipschitz Constants for Best Approximation in Continuous Function Spaces
We use a structural characterization of the metric projection PG(f), from the continuous function space to its one-dimensional subspace G, to derive a lower bound of the Hausdorff strong unicity constant (or weak sharp minimum constant) for PG and then show this lower bound can be attained. Then the exact value of Lipschitz constant for PG is computed. The process is a quantitative analysis based on the Gâteaux derivative of PG, a representation of local Lipschitz constants, the equivalence of local and global Lipschitz constants for lower semicontinuous mappings, and construction of functions
Modelling (001) surfaces of II-VI semiconductors
First, we present a two-dimensional lattice gas model with anisotropic
interactions which explains the experimentally observed transition from a
dominant c(2x2) ordering of the CdTe(001) surface to a local (2x1) arrangement
of the Cd atoms as an equilibrium phase transition. Its analysis by means of
transfer-matrix and Monte Carlo techniques shows that the small energy
difference of the competing reconstructions determines to a large extent the
nature of the different phases. Then, this lattice gas is extended to a model
of a three-dimensional crystal which qualitatively reproduces many of the
characteristic features of CdTe which have been observed during sublimation and
atomic layer epitaxy.Comment: 5 pages, 3 figure
Kinetics of restricted solid-on-solid models of film growth
We consider the kinetics of irreversible film growth in solid-on-solid models with various restrictions on the adsorption (or growth) sites. We show how the master equations for the probabilities of subconfigurations of filled sites can be analyzed exactly to obtain coverages and spatial correlations for the first several layers. These provide an efficient framework for analysis of the early-stage growth kinetics, and indicate rapid attainment of asymptotic behavior. We illustrate the (1+1)- and (2+1)-dimensional cases for the simplest restricted solid-on-solid condition, and various modifications
Characterization of the Local Lipschitz Constant
A characterization, using polynomials introduced by A. V. Kolushov, is given for the local Lipschitz constant for the best approximation operator in Chebyshev approximation from a Haar set. The characterization is then used to study the existence of uniform local Lipschitz constants
Nucleation, growth, and kinetic roughening of metal(100) homoepitaxial thin films
A unified analysis is presented of submonolayer nucleation and growth of two-dimensional islands and the subsequent transition to multilayer growth during metal-on-unreconstructed metal(100) homoepitaxy. First, we review and augment recent developments in submonolayer nucleation theory for general critical size i (above which islands are effectively stable against dissociation). We discuss choices of capture numbers for aggregation of adatoms with islands, and ramifications for island density scaling with deposition flux and substrate temperature. We also characterize a direct transition from critical size i = 1 to a well-defined regime of i = 3 scaling, with increasing temperature, for sufficiently strong adatom-adatom bonding. We note that there exists no well-defined regime of integer i \u3e 3. The submonolayer island distribution provides a template for subsequent unstable multilayer growth or mounding (which we contrast with self-affine growth). This mounding is induced by the presence of a step-edge barrier for downward diffusive transport in these systems. We characterize resulting oscillatory height correlation functions and non-Gaussian height and height-difference distributions. We also develop an appropriate kinematic diffraction theory to elucidate the oscillatory decay of Bragg intensities and the evolution from split to nonsplit diffraction profiles. Finally, we analyze experimental data for Fe(100) and Cu(100) homoepitaxy and extract key activation barriers for these systems
Diffusional Relaxation in Random Sequential Deposition
The effect of diffusional relaxation on the random sequential deposition
process is studied in the limit of fast deposition. Expression for the coverage
as a function of time are analytically derived for both the short-time and
long-time regimes. These results are tested and compared with numerical
simulations.Comment: 9 pages + 2 figure
- …