60 research outputs found

    The Focused Ultrasound Myoma Outcome Study (FUMOS); a retrospective cohort study on long-term outcomes of MR-HIFU therapy

    Get PDF
    Objectives: Since 2004, uterine fibroids have been treated with MR-HIFU, but there are persevering doubts on long-term efficacy to date. In the Focused Ultrasound Myoma Outcome Study (FUMOS), we evaluated long-term outcomes after MR-HIFU therapy, primarily to assess the reintervention rate. Methods: Data was retrospectively collected from 123 patients treated with MR-HIFU at our hospital from 2010 to 2017. Follow-up duration and baseline (MRI) characteristics were retrieved from medical records. Treatment failures, adverse events, and the nonperfused volume percentage (NPV%) were determined. Patients received a questionnaire about reinterventions, recovery time, satisfaction, and pregnancy outcomes. Restrictive treatment protocols were compared with unrestrictive (aiming for complete ablation) treatments. Subgroups were analyzed based on the achieved NPV < 50 or ≥ 50%. Results: Treatment failures occurred in 12.1% and the number of adverse events was 13.7%. Implementation of an unrestrictive treatment protocol significantly (p = 0.006) increased the mean NPV% from 37.4% [24.3–53.0] to 57.4% [33.5–76.5]. At 63.5 ± 29.0 months follow-up, the overall reintervention rate was 33.3% (n = 87). All reinterventions were performed within 34 months follow-up, but within 21 months in the unrestrictive group. The reintervention rate significantly (p = 0.002) decreased from 48.8% in the restrictive group (n = 43; follow-up 87.5 ± 7.3 months) to 18.2% in the unrestrictive group (n = 44; follow-up 40.0 ± 22.1 months). The median recovery time was 2.0 [1.0–7.0] days. Treatment satisfaction rate was 72.4% and 4/11 women completed family planning after MR-HIFU. Conclusions: The unrestrictive treatment protocol significantly increased the NPV%. Unrestrictive MR-HIFU treatments led to acceptable reintervention rates comparable to other reimbursed uterine-sparing treatments, and no reinterventions were reported beyond 21 months follow-up. Key Points: • All reinterventions were performe

    Development and clinical evaluation of a 3-step modified manipulation protocol for MRI-guided high-intensity focused ultrasound of uterine fibroids

    Get PDF
    __Objectives:__ The clinical applicability of magnetic resonance image−guided high-intensity focused ultrasound (MR-HIFU) treatment of uterine fibroids is often limited due to inaccessible fibroids or bowel interference. The aim of this study was to implement a newly developed 3-step modified manipulation protocol and to evaluate its influence on the number of eligible women and treatment fai

    Use of multiparametric MRI to characterize uterine fibroid tissue types

    Get PDF
    Background: Although the biological characteristics of uterine fibroids (UF) have implications for therapy choice and effectiveness, there is limited MRI data about these characteristics. Currently, the Funaki classification and Scale

    Multi-echo MR thermometry using iterative separation of baseline water and fat images

    No full text
    PURPOSE: To perform multi-echo water/fat separated proton resonance frequency (PRF)-shift temperature mapping. METHODS: State-of-the-art, iterative multi-echo water/fat separation algorithms produce high-quality water and fat images in the absence of heating but are not suitable for real-time imaging due to their long compute times and potential errors in heated regions. Existing fat-referenced PRF-shift temperature reconstruction methods partially address these limitations but do not address motion or large time-varying and spatially inhomogeneous B0 shifts. We describe a model-based temperature reconstruction method that overcomes these limitations by fitting a library of separated water and fat images measured before heating directly to multi-echo data measured during heating, while accounting for the PRF shift with temperature. RESULTS: Simulations in a mixed water/fat phantom with focal heating showed that the proposed algorithm reconstructed more accurate temperature maps in mixed tissues compared to a fat-referenced thermometry method. In a porcine phantom experiment with focused ultrasound heating at 1.5 Tesla, temperature maps were accurate to within 1∘ C of fiber optic probe temperature measurements and were calculated in 0.47 s per time point. Free-breathing breast and liver imaging experiments demonstrated motion and off-resonance compensation. The algorithm can also accurately reconstruct water/fat separated temperature maps from a single echo during heating. CONCLUSIONS: The proposed model-based water/fat separated algorithm produces accurate PRF-shift temperature maps in mixed water and fat tissues in the presence of spatiotemporally varying off-resonance and motion

    Subject-specific liver motion modeling in MRI : A feasibility study on spatiotemporal prediction

    Get PDF
    A liver motion model based on registration of dynamic MRI data, as previously proposed by the authors, was extended with temporal prediction and respiratory signal data. The potential improvements of these extensions with respect to the original model were investigated. Additional evaluations were performed to investigate the limitations of the model regarding temporal prediction and extreme breathing motion. Data were acquired of four volunteers, with breathing instructions and a respiratory belt. The model was built from these data using spatial prediction only and using temporal forward prediction of 300 ms to 1200 ms, using the extended Kalman filter. From temporal prediction of 0 ms to 1200 ms ahead, the Dice coefficient of liver overlap decreased with 0.85%, the median liver surface distance increased with 20.6% and the vessel misalignment increased with 20%. The mean vessel misalignment was 2.9 mm for the original method, 3.42 mm for spatial prediction with a respiratory signal and 4.01 mm for prediction of 1200 ms ahead with a respiratory signal. Although the extension of the model to temporal prediction yields a decreased prediction accuracy, the results are still acceptable. The use of the breathing signal as input to the model is feasible. Sudden changes in the breathing pattern can yield large errors. However, these errors only persist during a short time interval, after which they can be corrected automatically. Therefore, this model could be useful in a clinical setting

    Subject-specific liver motion modeling in MRI : A feasibility study on spatiotemporal prediction

    No full text
    A liver motion model based on registration of dynamic MRI data, as previously proposed by the authors, was extended with temporal prediction and respiratory signal data. The potential improvements of these extensions with respect to the original model were investigated. Additional evaluations were performed to investigate the limitations of the model regarding temporal prediction and extreme breathing motion. Data were acquired of four volunteers, with breathing instructions and a respiratory belt. The model was built from these data using spatial prediction only and using temporal forward prediction of 300 ms to 1200 ms, using the extended Kalman filter. From temporal prediction of 0 ms to 1200 ms ahead, the Dice coefficient of liver overlap decreased with 0.85%, the median liver surface distance increased with 20.6% and the vessel misalignment increased with 20%. The mean vessel misalignment was 2.9 mm for the original method, 3.42 mm for spatial prediction with a respiratory signal and 4.01 mm for prediction of 1200 ms ahead with a respiratory signal. Although the extension of the model to temporal prediction yields a decreased prediction accuracy, the results are still acceptable. The use of the breathing signal as input to the model is feasible. Sudden changes in the breathing pattern can yield large errors. However, these errors only persist during a short time interval, after which they can be corrected automatically. Therefore, this model could be useful in a clinical setting

    Diffusion-weighted MRI with ADC mapping for response prediction and assessment of oesophageal cancer:A systematic review

    No full text
    Purpose: The aim was to perform a systematic review on the value of diffusion-weighted MRI (DW-MRI) with apparent diffusion coefficient (ADC) mapping in the prediction and assessment of response to chemo- and/or radiotherapy in oesophageal cancer. Materials and methods: A systematic search was performed on Pubmed, Embase, Medline and Cochrane databases. Studies that evaluated the ADC for response evaluation before, during or after chemo- and/or radiotherapy were included. The Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) was used to assess the quality of the included studies. Results: Fourteen studies, comprising 516 patients, in which the response to treatment in oesophageal cancer was evaluated on ADC maps were included. Acquisition parameter settings for DW-MRI and ROI placement varied substantially. The reference standard was RECIST or endoscopic assessment in eight non-surgery studies and histopathology after surgery in six studies. A high pre-treatment ADC significantly correlated with good response in three out of 12 studies; conversely, one study reported a significantly higher pre-treatment ADC in poor responders. In five out of eight studies good responders showed a significantly larger relative increase in ADC two weeks after the onset of treatment (range 23–59%) than poor responders (range 1.5–17%). After chemo- and/or radiotherapy ADC results varied considerably, amongst others due to large variation in the interval between completion of therapy and DW-MRI. Conclusion: DW-MRI for response evaluation to chemo- and/or radiotherapy in oesophageal cancer shows variable methods and results. A large relative ADC increase after two weeks of treatment seems most predictive for good response

    Visualizing type IV endoleak using magnetic resonance imaging with a blood pool contrast agent

    No full text
    Growing evidence suggests that graft porosity hampers aneurysm shrinkage in patients who have been treated with the original Excluder device. To our knowledge, this suspected porosity has never been visualized in such patients. We present three patients treated with the original Excluder device whose aneurysms did not shrink in the first 2 years after treatment. Computed tomography (CT) angiography and late phase CT did not show endoleak. We performed late phase magnetic resonance imaging with a blood pool agent to visualize graft porosity. Our cases illustrate the usability of a new contrast agent and a new imaging strategy for visualizing slow-flow endoleaks that can not be imaged using currently used imaging techniques with conventional contrast agents.status: publishe
    • …
    corecore