486 research outputs found
The extended linear complementarity problem
In this paper we define the Extended Linear Complementarity Problem (ELCP), an extension of the well-known Linear Complementarity Problem (LCP). We study the general solution set of an ELCP and we present an algorithm to find all its solutions. Finally we show that the ELCP can be used to solve some important problems in the max algebra
Forecasting day-ahead electricity prices in Europe: the importance of considering market integration
Motivated by the increasing integration among electricity markets, in this
paper we propose two different methods to incorporate market integration in
electricity price forecasting and to improve the predictive performance. First,
we propose a deep neural network that considers features from connected markets
to improve the predictive accuracy in a local market. To measure the importance
of these features, we propose a novel feature selection algorithm that, by
using Bayesian optimization and functional analysis of variance, evaluates the
effect of the features on the algorithm performance. In addition, using market
integration, we propose a second model that, by simultaneously predicting
prices from two markets, improves the forecasting accuracy even further. As a
case study, we consider the electricity market in Belgium and the improvements
in forecasting accuracy when using various French electricity features. We show
that the two proposed models lead to improvements that are statistically
significant. Particularly, due to market integration, the predictive accuracy
is improved from 15.7% to 12.5% sMAPE (symmetric mean absolute percentage
error). In addition, we show that the proposed feature selection algorithm is
able to perform a correct assessment, i.e. to discard the irrelevant features
A distributed accelerated gradient algorithm for distributed model predictive control of a hydro power valley
A distributed model predictive control (DMPC) approach based on distributed
optimization is applied to the power reference tracking problem of a hydro
power valley (HPV) system. The applied optimization algorithm is based on
accelerated gradient methods and achieves a convergence rate of O(1/k^2), where
k is the iteration number. Major challenges in the control of the HPV include a
nonlinear and large-scale model, nonsmoothness in the power-production
functions, and a globally coupled cost function that prevents distributed
schemes to be applied directly. We propose a linearization and approximation
approach that accommodates the proposed the DMPC framework and provides very
similar performance compared to a centralized solution in simulations. The
provided numerical studies also suggest that for the sparsely interconnected
system at hand, the distributed algorithm we propose is faster than a
centralized state-of-the-art solver such as CPLEX
Hybrid model predictive control for freeway traffic using discrete speed limit signals
HYCON2 Show day - Traffic modeling, Estimation and Control 13/05/2014 GrenobleIn this paper, two hybrid Model Predictive Control (MPC) approaches for freeway traffic control are proposed considering variable speed limits (VSL) as discrete variables as in current real world implementations. These discrete characteristics of the speed limits values and some necessary constraints for the actual operation of VSL are usually underestimated in the literature, so we propose a way to include them using a macroscopic traffic model within an MPC framework. For obtaining discrete signals, the MPC controller has to solve a highly non-linear optimization problem, including mixed-integer variables. Since solving such a problem is complex and difficult to execute in real-time, we propose some methods to obtain reasonable control actions in a limited computation time. The first two methods (-exhaustive and -genetic discretization) consist of first relaxing the discrete constraints for the VSL inputs; and then, based on this continuous solution and using a genetic or an exhaustive algorithm, to find discrete solutions within a distance of the continuous solution that provide a good performance. The second class of methods split the problem in a continuous optimization for the ramp metering signals and in a discrete optimization for speed limits. The speed limits optimization, which is much more time-consuming than the ramp metering one, is solved by a genetic or an exhaustive algorithm in communication with a non-linear solver for the ramp metering. The proposed methods are tested by simulation, showing not only a good performance, but also keeping the computation time reduced.Unión Europea FP7/2007–201
- …