345 research outputs found

    Faecal microbiota transplantation : a regulatory hurdle?

    Get PDF
    During faecal microbiota transplantation, stool from a healthy donor is transplanted to treat a variety of dysbiosis-associated gut diseases. Competent authorities are faced with the challenge to provide adequate regulation. Currently, regulatory harmonization is completely lacking and authorities apply non-existing to most stringent requirements. A regulatory approach for faecal microbiota transplantation could be inserting faecal microbiota transplantation in the gene-, cell-and tissue regulations, including the hospital exemption system in the European Advanced Therapy Medicinal Products regulation, providing a pragmatic and efficacy-risk balanced approach and granting all patients as a matter of principle access to this therapy

    Analysis of iodinated quorum sensing peptides by LC-UV/ESI ion trap mass spectrometry

    Get PDF
    Five different quorum sensing peptides (QSP) were iodinated using different iodination techniques. These iodinated peptides were analyzed using a C-18 reversed phase HPLC system, applying a linear gradient of water and acetonitrile containing 0.1% (m/v) formic acid as mobile phase. Electrospray ionization (ESI) ion trap mass spectrometry was used for the identification of the modified peptides, while semi-quantification was performed using total ion current (TIC) spectra. Non-iodinated peptides and mono- and di-iodinated peptides (NIP, MIP and DIP respectively) were well separated and eluted in that order. Depending on the used iodination method, iodination yields varied from low (2%) to high (57%)

    Stretchability : the metric for stretchable electrical interconnects

    Get PDF
    Stretchable circuit technology, as the name implies, allows an electronic circuit to adapt to its surroundings by elongating when an external force is applied. Based on this, early authors proposed a straightforward metric: stretchability—the percentage length increase the circuit can survive while remaining functional. However, when comparing technologies, this metric is often unreliable as it is heavily design dependent. This paper aims to demonstrate this shortcoming and proposes a series of alternate methods to evaluate the performance of a stretchable interconnect. These methods consider circuit volume, material usage, and the reliability of the technology. This analysis is then expanded to the direct current (DC) resistance measurement performed on these stretchable interconnects. A simple dead reckoning approach is demonstrated to estimate the magnitude of these measurement errors on the final measurement

    N-alkylamides : from plant to brain

    Get PDF
    Background: Plant N-alkylamides (NAAs) are bio-active compounds with a broad functional spectrum. In order to reach their pharmacodynamic targets, they have to overcome several barriers of the body in the absorption phase. The permeability kinetics of spilanthol (a diene NAA) and pellitorine (a triene NAA) across these barriers (i.e. skin, oral/gut mucosa, blood-brain barrier) were investigated. Methods: The skin and oral mucosa permeability were investigated using human skin and pig mucosa in an ex vivo in vitro Franz diffusion cell set-up. The gut absorption characteristics were examined using the in vitro Caco-2 cell monolayer test system. The initial blood-brain barrier transport kinetics were investigated in an in vivo mice model using multiple time regression and efflux experiments. Quantification of both NAAs was conducted using HPLC-UV and bio-analytical UPLC-MS methods. Results: We demonstrated that spilanthol and pellitorine are able to penetrate the skin after topical administration. It is likely that spilanthol and pellitorine can pass the endothelial gut as they easily pass the Caco-2 cells in the monolayer model. It has been shown that spilanthol also crosses the oral mucosa as well as the blood-brain barrier. Conclusion: It was demonstrated that NAAs pass various physiological barriers i.e. the skin, oral and gut mucosa, and after having reached the systemic circulation, also the blood-brain barrier. As such, NAAs are cosmenutriceuticals which can be active in the brain

    Free-form 2.5D thermoplastic circuits using one-time stretchable interconnections

    Get PDF
    A technology is presented for the production of soft and rigid circuits with an arbitrary 2.5D fixed shape. The base of this technology is our proprietary technology for elastic circuits with a random shape, in which the elastic thermoset (mostly PDMS) polymer is now replaced by soft or rigid thermoplastic variants. An additional thermoforming step is required to transform the circuit from its initial flat to its final fixed 2.5D shape, but for rigid fixed shape circuits only one-time stretchability of the extensible interconnects is required, relieving the reliability requirements

    A through wall doppler radar system: active textile antenna design, prototyping and experiment

    Get PDF
    Using garments as a platform for electronic sensing and communication systems opens up a wide range of novel and exciting applications. By carefully tailoring the antenna properties and by adopting a dedicated design strategy, a robust wearable antenna system can be obtained onto which all necessary electronics are integrated. In this contribution, the dedicated design for approach of a low-weight, wearable Doppler radar system fabricated on textile materials is presented. The system, fully integrated into a rescue worker's garment, is capable of detecting moving objects behind a barrier. It relies on an array of four textile transmit antennas to scan the surroundings. At the receiving end, an active wearable receive antenna is deployed to capture the reflected signals. It is demonstrated that the on-body system is capable of detecting moving subjects in indoor environments, including through-wall scenarios
    • …
    corecore