7 research outputs found

    Comparative Evaluation of Cu(acac)<sub>2</sub> and {[Cu(μ-<i>O</i>,<i>O</i>′-NO<sub>3</sub>) (L-arg) (2,2′-bpy)]·NO<sub>3</sub>}<sub>n</sub> as Potential Precursors of Electroless Metallization of Laser-Activated Polymer Materials

    No full text
    This paper presents a comparative assessment of Cu(acac)2 and {[Cu(μ-O,O′-NO3) (L-arg)(2,2′-bpy)]·NO3}n as potential precursors for the electroless metallization of laser activated polymer materials. Coatings consisting of polyurethane resin, one of the two mentioned precursor compounds, and antimony oxide (Sb2O3), as a compound strongly absorbing infrared radiation, were applied on the polycarbonate substrate. The coatings were activated with infrared Nd: YAG laser radiation (λ = 1064 nm) and electroless metallized. It was found that after laser irradiation, a micro-rough surface structure of the coatings was formed, on which copper was present in various oxidation states, as well as in its metallic form. For selected parameters of laser irradiation, it was possible to deposit a copper layer on the coating containing Cu(acac)2 and Sb2O3, which is characterized by high adhesion strength. It was also found that the {[Cu(μ-O,O′-NO3) (L-arg)(2,2′-bpy)]·NO3}n complex was not an effective precursor for the electroless metallization of Nd:YAG laser activated coatings. An attempt was made to determine the influence of the precursor chemical structure on the obtained metallization effects

    The Effect of Accelerated Aging on Polylactide Containing Plant Extracts

    No full text
    In this study, natural extracts of plant origin were used as anti-aging compounds of biodegradable polymers. Coffee (0.5&#8211;10 wt%), cocoa, or cinnamon extracts were added to the polylactide matrix. The obtained materials were subjected to an accelerated aging process (720, 1440, or 2160 h) at 45 &#176;C and 70% relative humidity under continuous UV radiation. The effectiveness of the tested extracts was compared to a commercially available anti-aging compound, 2 wt% of butylated hydroxytoluene. Visual evaluation, scanning electron microscopy, melt flow rate, thermogravimetry, differential scanning calorimetry, tensile strength, and impact tensile tests were performed. We show that the use of smaller amounts of tested extracts is particularly advantageous, which do not adversely affect the properties of polylactide-based materials at low contents. At the same time, their effectiveness in stabilizing tested properties during the accelerated aging process is mostly comparable to or greater than the reference compound

    Composting of Polylactide Containing Natural Anti-Aging Compounds of Plant Origin

    No full text
    The paper presents the effects of biodegradation of polylactide containing natural anti-aging compounds. Polymer containing 0.5; 5 and 10 wt % of coffee, cocoa or cinnamon extracts were subjected to industrial composting for 7, 14, 21 or 28 days. The effect of the composting process on polylactide properties was examined based on visual assessment, scanning electron microscopy, average molecular weight, differential scanning calorimetry, thermogravimetry, and tensile strength. The impact of the tested extracts on the effects of the composting process was compared with the impact of a commercially available anti-aging compound. It was found that the tested extracts in most cases did not adversely affect the effects of the composting process compared to pure polylactide, often resulting in intensification of biodegradation processes. As a result of the composting process, changes in the macro- and microscopic appearance of the samples and a decrease in molecular weight, phase transition temperatures, thermal resistance, and thermal strength were observed on a scale close to or greater than the reference anti-aging compound

    Laser Activated and Electroless Metalized Polyurethane Coatings Containing Copper(II) L-Tyrosine and Glass Microspheres

    No full text
    Polyurethane coatings containing copper(II) L-tyrosine and glass microspheres were laser irradiated and underwent electroless metallization. Various sizes of glass microspheres were incorporated into the polyurethane coating matrix in order to examine their effects on surface activation and electroless metallization. The surface of the coatings was activated by using ArF excimer laser emitting ultraviolet radiation (λ = 193 nm) using different number of laser pulses and their fluence. The effects of surface activation and metallization were evaluated mainly based on optical and scanning electron microcopies (SEM), energy-dispersive X-ray spectroscopy (EDX) and photoelectron spectroscopy (XPS). It was found that the presence of glass microspheres enabled the reduction in copper complex content, intensified the ablation process (higher cone-like structures created) and resulted in higher content of copper metallic seeds. On the other hand, the glass microspheres concentration, which was higher for lower size microspheres, was advantageous for obtaining a fully metallized layer

    Copper Filled Poly(Acrylonitrile-co-Butadiene-co-Styrene) Composites for Laser-Assisted Selective Metallization

    No full text
    Selective metallization of polymeric materials using the technique known as laser direct structuring (LDS) is intensively developed. In this technique, metallized products can be manufactured by injection molding or by 3D printing process if rapid prototyping is need. Special additives present in the polymer matrix enable direct electroless metallization only on the surface which was laser activated. This paper presents the results of using copper microparticles introduced into the poly(acrylonitrile-butadiene-styrene) (ABS) matrix at various amounts (up to about 5 vol %). ABS was selected due to its good processing and mechanical properties and as one of the most common thermoplastics used in 3D printing. The influence of copper on structural, mechanical, and processing properties as well as on the effects of laser surface activation were determined. Two types of infrared lasers were tested for surface activation: Nd:YAG fiber laser (&lambda; = 1064 nm) and CO2 laser (&lambda; = 10.6 &micro;m). Various irradiation parameters (power, scanning speed, and frequency) were applied to find suitable conditions for laser surface activation and electroless metallization. It was found that the composites tested can be effectively metallized using the Nd:YAG laser, but only in a narrow range of radiation parameters. Activation with CO2 laser failed, regardless of applied irradiation conditions. It resulted from the fact that ablation rate and thickness of modified surface layer for CO2 were lower than for Nd:YAG laser using the same irradiation parameters (power, speed, and frequency of laser beams), thus the laser wavelength was crucial for successful surface activation

    Progressing Vulvar Melanoma Caused by Instability in cKIT Juxtamembrane Domain: A Case Report and Review of Literature

    No full text
    In order to identify the molecular pathways governing melanoma and track its progression, the next-generation sequencing (NGS) approach and targeted sequencing of cancer genes were employed. The primary tumor, as well as metastatic tissue, of an 84-year-old patient diagnosed with vulvar melanoma (VM), were investigated. The primary tumor specimen showed multiple somatic mutations in TP53 gene, suggesting its major contribution to melanoma origin. The metastatic sample showed additional alterations, including other melanoma-related genes. Clinical relevancy is postulated to juxtamembrane region instability of KIT gene (c-KIT). We did not identify BRAF or NRAS alterations, which are typical for the most common melanoma pathway&ndash;MAPK cascade. However, it should be noted that this is the first report evidencing PDGFRA in melanoma, although its role in triggering VM needs to be further elucidated
    corecore