7 research outputs found

    Predicting volleyball serve-reception at group level

    Get PDF
    In a group-serve-reception task, how does serve-reception become effective? We addressed "who" receives/passes the ball, what task-related variables predict action mode selection and whether the action mode selected was associated with reception efficacy. In 182 serve-receptions we tracked the ball and the receivers' heads with two video-cameras to generate 3D world-coordinates reconstructions. We defined receivers' reception-areas based on Voronoi diagrams (VD). Our analyses of the data showed that this approach was accurate in describing "who" receives the serve in 95.05% of the times. To predict action mode selection, we used variables related to: serve kinematics, receiver's movement and on-court positioning, the relation between receiver and his closest partner, and interactions between receiver-ball and receiver-target. Serve's higher initial velocities together with higher maximum height, as well as smaller longitudinal distances between receiver and target increased the chances for the use of the overhand pass. Conversely, decreasing alignment of the receiver with the ball and the target increased the chances of using the underhand-lateral pass. Finally, the use of the underhand-lateral pass was associated with lower quality receptions. Behavioural variability's relevance for serve-reception training is discussed

    Pacing and Decision Making in Sport and Exercise: The Roles of Perception and Action in the Regulation of Exercise Intensity

    Get PDF
    In pursuit of optimal performance, athletes and physical exercisers alike have to make decisions about how and when to invest their energy. The process of pacing has been associated with the goal-directed regulation of exercise intensity across an exercise bout. The current review explores divergent views on understanding underlying mechanisms of decision making in pacing. Current pacing literature provides a wide range of aspects that might be involved in the determination of an athlete's pacing strategy, but lacks in explaining how perception and action are coupled in establishing behaviour. In contrast, decision-making literature rooted in the understanding that perception and action are coupled provides refreshing perspectives on explaining the mechanisms that underlie natural interactive behaviour. Contrary to the assumption of behaviour that is managed by a higher-order governor that passively constructs internal representations of the world, an ecological approach is considered. According to this approach, knowledge is rooted in the direct experience of meaningful environmental objects and events in individual environmental processes. To assist a neuropsychological explanation of decision making in exercise regulation, the relevance of the affordance competition hypothesis is explored. By considering pacing as a behavioural expression of continuous decision making, new insights on underlying mechanisms in pacing and optimal performance can be developed. © 2014 Springer International Publishing Switzerland
    corecore