39 research outputs found
Role of internal chain dynamics on the rupture kinetic of adhesive contacts
We study the forced rupture of adhesive contacts between monomers that are not covalently linked in a
Rouse chain. When the applied force (f) to the chain end is less than the critical force for rupture (fc), the
reversible rupture process is coupled to the internal Rouse modes. If f=fc > 1 the rupture is irreversible.
In both limits, the nonexponential distribution of contact lifetimes, which depends sensitively on the
location of the contact, follows the double-exponential (Gumbel) distribution. When two contacts are well
separated along the chain, the rate limiting step in the sequential rupture kinetics is the disruption of the
contact that is in the chain interior. If the two contacts are close to each other, they cooperate to sustain the
stress, which results in an ‘‘all-or-none’’ transition
Fluctuating Nonlinear Spring Model of Mechanical Deformation of Biological Particles
We present a new theory for modeling forced indentation spectral lineshapes
of biological particles, which considers non-linear Hertzian deformation due to
an indenter-particle physical contact and bending deformations of curved beams
modeling the particle structure. The bending of beams beyond the critical point
triggers the particle dynamic transition to the collapsed state, an extreme
event leading to the catastrophic force drop as observed in the force
(F)-deformation (X) spectra. The theory interprets fine features of the
spectra: the slope of the FX curves and the position of force-peak signal, in
terms of mechanical characteristics --- the Young's moduli for Hertzian and
bending deformations E_H and E_b, and the probability distribution of the
maximum strength with the strength of the strongest beam F_b^* and the beams'
failure rate m. The theory is applied to successfully characterize the
curves for spherical virus particles --- CCMV, TrV, and AdV
Tubulin bond energies and microtubule biomechanics determined from nanoindentation in silico
Microtubules, the primary components of the chromosome segregation machinery,
are stabilized by longitudinal and lateral non-covalent bonds between the
tubulin subunits. However, the thermodynamics of these bonds and the
microtubule physico-chemical properties are poorly understood. Here, we explore
the biomechanics of microtubule polymers using multiscale computational
modeling and nanoindentations in silico of a contiguous microtubule fragment. A
close match between the simulated and experimental force-deformation spectra
enabled us to correlate the microtubule biomechanics with dynamic structural
transitions at the nanoscale. Our mechanical testing revealed that the
compressed MT behaves as a system of rigid elements interconnected through a
network of lateral and longitudinal elastic bonds. The initial regime of
continuous elastic deformation of the microtubule is followed by the transition
regime, during which the microtubule lattice undergoes discrete structural
changes, which include first the reversible dissociation of lateral bonds
followed by irreversible dissociation of the longitudinal bonds. We have
determined the free energies of dissociation of the lateral (6.9+/-0.4
kcal/mol) and longitudinal (14.9+/-1.5 kcal/mol) tubulin-tubulin bonds. These
values in conjunction with the large flexural rigidity of tubulin
protofilaments obtained (18,000-26,000 pN*nm^2), support the idea that the
disassembling microtubule is capable of generating a large mechanical force to
move chromosomes during cell division. Our computational modeling offers a
comprehensive quantitative platform to link molecular tubulin characteristics
with the physiological behavior of microtubules. The developed in silico
nanoindentation method provides a powerful tool for the exploration of
biomechanical properties of other cytoskeletal and multiprotein assemblie
Mechanism of Fibrin(ogen) Forced Unfolding
SummaryFibrinogen, upon enzymatic conversion to monomeric fibrin, provides the building blocks for fibrin polymer, the scaffold of blood clots and thrombi. Little has been known about the force-induced unfolding of fibrin(ogen), even though it is the foundation for the mechanical and rheological properties of fibrin, which are essential for hemostasis. We determined mechanisms and mapped the free energy landscape of the elongation of fibrin(ogen) monomers and oligomers through combined experimental and theoretical studies of the nanomechanical properties of fibrin(ogen), using atomic force microscopy-based single-molecule unfolding and simulations in the experimentally relevant timescale. We have found that mechanical unraveling of fibrin(ogen) is determined by the combined molecular transitions that couple stepwise unfolding of the γ chain nodules and reversible extension-contraction of the α-helical coiled-coil connectors. These findings provide important characteristics of the fibrin(ogen) nanomechanics necessary to understand the molecular origins of fibrin viscoelasticity at the fiber and whole clot levels
Molecular packing structure of fibrin fibers resolved by X-ray scattering and molecular modeling
Fibrin is the major extracellular component of blood clots and a proteinaceous hydrogel used as a versatile biomaterial. Fibrin forms branched networks built of laterally associated double-stranded protofibrils. This multiscale hierarchical structure is crucial for the extraordinary mechanical resilience of blood clots, yet the structural basis of clot mechanical properties remains largely unclear due, in part, to the unresolved molecular packing of fibrin fibers. Here the packing structure of fibrin fibers is quantitatively assessed by combining Small Angle X-ray Scattering (SAXS) measurements of fibrin reconstituted under a wide range of conditions with computational molecular modeling of fibrin protofibrils. The number, positions, and intensities of the Bragg peaks observed in the SAXS experiments were reproduced computationally based on the all-atom molecular structure of reconstructed fibrin protofibrils. Specifically, the model correctly predicts the intensities of the reflections of the 22.5 nm axial repeat, corresponding to the half-staggered longitudinal arrangement of fibrin molecules. In addition, the SAXS measurements showed that protofibrils within fibrin fibers have a partially ordered lateral arrangement with a characteristic transverse repeat distance of 13 nm, irrespective of the fiber thickness. These findings provide fundamental insights into the molecular structure of fibrin clots that underlies their biological and physical properties. This journal i