212 research outputs found

    Numerical analysis of pulse pedestal and dynamic chirp formation on picosecond modelocked laser pulses after propagation through a semiconductor optical amplifier

    Get PDF
    A numerical analysis, based on a modified Schrodinger equation, of the formation of pulse pedestals and dynamic chirp formation on picosecond pulses after propagation through a semiconductor optical amplifier is presented. The numerical predictions are confirmed by an experiment that utilises the frequency resolved optical gating technique for the amplified pulse characterisation

    Generation of wavelength tunable optical pulses with SMSR exceeding 50 dB by self-seeding a gain-switched source containing two FP lasers

    Get PDF
    In this letter, we show the generation of shorter pulses (∌20 ps) that exhibit side mode suppression ratios (SMSR's) greater than 50 dB and wider tuning range (48.91 nm). Our technique is based on the self-seeding of a gain-switched source containing two FP lasers

    Triple-wavelength fiber ring laser based on a hybrid gain medium actively mode-locked at 10 GHz

    Get PDF
    A fiber ring laser based on a hybrid gain medium that produces three simultaneously mode-locked wavelength channels is presented. The lithium niobate based modulator used to actively mode-lock the laser cavity at 10 GHz is birefringence compensated to reduce its polarization sensitivity. A Lyot filter defines the lasers multiwavelength spectrum which has a wavelength spacing of 1 nm. The polarization sensitive nature of the laser cavity and its affect on the performance of the laser is discussed

    Discrete mode lasers for applications in access networks

    Get PDF
    Fast development of the modern telecommunication networks such as fiber-to-the-home or radio-over-fiber systems require an inexpensive yet reliable optical transmitter for electro-optic conversion. Such devices should be able to generate stable, single moded optical signals suitable for athermal operation. Discrete Mode Lasers (DMLs) are able to fulfill all the above-mentioned requirements with the added benefit of low sensitivity to optical feedback. DMLs are essentially Fabry-Perot lasers in which the refractive index is modified by introducing perturbations along very small sections of the laser cavity. These modifications result in a single mode laser output with a very narrow linewidth (order of 400 kHz). In this paper, we demonstrate how a DML can outperform the commonly used/commercially available DFB lasers in terms of linewidth, sensitivity to optical feedback and transmission performance in the presence of feedback

    Self-pulsation at 480 GHz from a two-color discrete mode laser diode

    Get PDF
    A discrete mode Fabry-PĂ©rot laser is designed and fabricated to achieve two-color lasing. We demonstrate beating between the two laser modes and self-pulsation at 480 GHz

    Inverse scattering approach to multiwavelength Fabry-PĂ©rot laser design

    Get PDF
    A class of multiwavelength Fabry-Pérot lasers is introduced where the spectrum is tailored through a patterning of the cavity effective index. The cavity geometry is obtained using an inverse scattering approach and can be designed such that the spacing of discrete Fabry-Pérot lasing modes is limited only by the bandwidth of the inverted gain medium. A specific two-color semiconductor laser with a mode spacing in the THz region is designed, and measurements are presented demonstrating the simultaneous oscillation of the two wavelengths. The nonperiodic effective index profile of the particular two-color device considered is shown to be related to a Moiré or superstructure grating

    Cost efficient narrow linewidth laser transmitter for coherent detection

    Get PDF
    Authors present a cost efficient narrow linewidth laser transmitter for future coherent detection systems. The spectral purity of the laser allows the phase modulation of data signals at bit rates as low as 155 Mb/s

    Discrete mode laser diodes with ultra narrow linewidth emission <3kHz

    Get PDF
    Ex-facet, free-running ultra-low linewidth (<3 kHz), single mode laser emission is demonstrated using low cost, regrowth-free ridge waveguide discrete mode Fabry-Perot laser diode chips

    Two-photon-absorption-based OSNR monitor for NRZ-PSK transmission systems

    Get PDF
    A two-photon absorption microcavity-based technique for monitoring in-band optical signal-to-noise ratio (OSNR) in nonreturn-to-zero phase-shift-keying systems is presented. Experiments using a 10-Gb/s differential phase-shift-keying system showed that accurate measurements ( 1 dB) were possible for OSNRs in excess of 20 dB

    Investigation of noise suppression, pulse intensity and chirp of an actively mode-locked semiconductor fiber ring laser

    Get PDF
    An actively mode-locked fiber ring laser that utilizes an EDFA and semiconductor optical amplifier (SOA) is presented. The SOA enhances noise suppression. Active mode-locking was demonstrated at repetition rates up to 20 GHz. The effects of intra-cavity power and SOA current on noise suppression are studied for two types of commercially available SOA. The frequency resolved optical gating technique is used to characterize the output pulse stream intensity and frequency chirp
    • 

    corecore