16,777 research outputs found

    Probing multipartite entanglement in a coupled Jaynes-Cummings system

    Full text link
    We show how to probe multipartite entanglement in NN coupled Jaynes-Cummings cells where the degrees of freedom are the electronic energies of each of the NN atoms in separate single-mode cavities plus the NN single-mode fields themselves. Specifically we propose probing the combined system as though it is a dielectric medium. The spectral properties and transition rates directly reveal multipartite entanglement signatures. It is found that the Hilbert space of the NN cell system can be confined to the totally symmetric subspace of two states only that are maximally-entangled W states with 2N degrees of freedom

    Entanglement vs. the quantum-to-classical transition

    Get PDF
    We analyze the quantum-to-classical transition (QCT) for coupled bipartite quantum systems for which the position of one of the two subsystems is continuously monitored. We obtain the surprising result that the QCT can emerge concomitantly with the presence of highly entangled states in the bipartite system. Furthermore the changing degree of entanglement is associated with the back-action of the measurement on the system and is itself an indicator of the QCT. Our analysis elucidates the role of entanglement in von Neumann's paradigm of quantum measurements comprised of a system and a monitored measurement apparatus

    MEASUREMENT OF PRICE RISK IN REVENUE INSURANCE: IMPLICATIONS OF DISTRIBUTIONAL ASSUMPTIONS

    Get PDF
    A variety of crop revenue insurance programs have recently been introduced. A critical component of revenue insurance contracts is quantifying the risk associated with stochastic prices. Forward-looking, market-based measures of price risk which are often available in form of options premia are preferable. Because such measures are not available for every crop, some current revenue insurance programs alternatively utilize historical price data to construct measures of price risk. This study evaluates the distributional implications of alternative methods for estimating price risk and deriving insurance premium rates. A variety of specification tests are employed to evaluate distributional assumptions. Conditional heteroskedasticity models are used to determine the extent to which price distributions may be characterized by nonconstant variances. In addition, these models are used to identify variables which may be used for conditioning distributions for rating purposes. Discrete mixtures of normals provide flexible parametric specifications capable of recognizing the skewness and kurtosis present in commodity pricesRisk and Uncertainty,

    On the epistemic view of quantum states

    Full text link
    We investigate the strengths and limitations of the Spekkens toy model, which is a local hidden variable model that replicates many important properties of quantum dynamics. First, we present a set of five axioms that fully encapsulate Spekkens' toy model. We then test whether these axioms can be extended to capture more quantum phenomena, by allowing operations on epistemic as well as ontic states. We discover that the resulting group of operations is isomorphic to the projective extended Clifford Group for two qubits. This larger group of operations results in a physically unreasonable model; consequently, we claim that a relaxed definition of valid operations in Spekkens' toy model cannot produce an equivalence with the Clifford Group for two qubits. However, the new operations do serve as tests for correlation in a two toy bit model, analogous to the well known Horodecki criterion for the separability of quantum states.Comment: 16 pages, 9 figure

    The association between retinal vein ophthalmodynamometric force change and optic disc excavation

    Get PDF
    Aim: Retinal vein ophthalmodynamometric force (ODF) is predictive of future optic disc excavation in glaucoma, but it is not known if variation in ODF affects prognosis. We aimed to assess whether a change in ODF provides additional prognostic information. Methods: 135 eyes of 75 patients with glaucoma or being glaucoma suspects had intraocular pressure (IOP), visual fields, stereo optic disc photography and ODF measured on an initial visit and a subsequent visit at mean 82 (SD 7.3) months later. Corneal thickness and blood pressure were recorded on the latter visit. When venous pulsation was spontaneous, the ODF was recorded as 0 g. Change in ODF was calculated. Flicker stereochronoscopy was used to determine the occurrence of optic disc excavation, which was modelled against the measured variables using multiple mixed effects logistic regression. Results: Change in ODF (p=0.046) was associated with increased excavation. Average IOP (p=0.66) and other variables were not associated. Odds ratio for increased optic disc excavation of 1.045 per gram ODF change (95% CI 1.001 to 1.090) was calculated. Conclusion: Change in retinal vein ODF may provide additional information to assist with glaucoma prognostication and implies a significant relationship between venous change and glaucoma patho-physiology

    Generalized W-Class State and its Monogamy Relation

    Full text link
    We generalize the W class of states from nn qubits to nn qudits and prove that their entanglement is fully characterized by their partial entanglements even for the case of the mixture that consists of a W-class state and a product state ∣0⟩⊗n\ket{0}^{\otimes n}.Comment: 12 pages, 1 figur

    Monogamy and polygamy for multi-qubit entanglement using R\'enyi entropy

    Full text link
    Using R\'enyi-α\alpha entropy to quantify bipartite entanglement, we prove monogamy of entanglement in multi-qubit systems for α≥2\alpha \geq 2. We also conjecture a polygamy inequality of multi-qubit entanglement with strong numerical evidence for 0.83−ϵ≤α≤1.43+ϵ0.83-\epsilon \leq \alpha \leq 1.43+\epsilon with 0<ϵ<0.010<\epsilon<0.01.Comment: 19 pages, 2 figure

    Classical Physics and Quantum Loops

    Get PDF
    The standard picture of the loop expansion associates a factor of h-bar with each loop, suggesting that the tree diagrams are to be associated with classical physics, while loop effects are quantum mechanical in nature. We discuss examples wherein classical effects arise from loop contributions and display the relationship between the classical terms and the long range effects of massless particles.Comment: 15 pages, 3 figure
    • …
    corecore