41 research outputs found

    Gut Microbiota and Cardiovascular Uremic Toxicities

    Get PDF
    Cardiovascular disease (CVD) remains a major cause of high morbidity and mortality in patients with chronic kidney disease (CKD). Numerous CVD risk factors in CKD patients have been described, but these do not fully explain the high pervasiveness of CVD or increased mortality rates in CKD patients. In CKD the loss of urinary excretory function results in the retention of various substances referred to as “uremic retention solutes”. Many of these molecules have been found to exert toxicity on virtually all organ systems of the human body, leading to the clinical syndrome of uremia. In recent years, an increasing body of evidence has been accumulated that suggests that uremic toxins may contribute to an increased cardiovascular disease (CVD) burden associated with CKD. This review examined the evidence from several clinical and experimental studies showing an association between uremic toxins and CVD. Special emphasis is addressed on emerging data linking gut microbiota with the production of uremic toxins and the development of CKD and CVD. The biological toxicity of some uremic toxins on the myocardium and the vasculature and their possible contribution to cardiovascular injury in uremia are also discussed. Finally, various therapeutic interventions that have been applied to effectively reduce uremic toxins in patients with CKD, including dietary modifications, use of prebiotics and/or probiotics, an oral intestinal sorbent that adsorbs uremic toxins and precursors, and innovative dialysis therapies targeting the protein-bound uremic toxins are also highlighted. Future studies are needed to determine whether these novel therapies to reduce or remove uremic toxins will reduce CVD and related cardiovascular events in the long-term in patients with chronic renal failure

    Interleukin-6 Is a Risk Factor for Atrial Fibrillation in Chronic Kidney Disease: Findings from the CRIC Study.

    Get PDF
    Atrial fibrillation (AF) is the most common sustained arrhythmia in patients with chronic kidney disease (CKD). In this study, we examined the association between inflammation and AF in 3,762 adults with CKD, enrolled in the Chronic Renal Insufficiency Cohort (CRIC) study. AF was determined at baseline by self-report and electrocardiogram (ECG). Plasma concentrations of interleukin(IL)-1, IL-1 Receptor antagonist, IL-6, tumor necrosis factor (TNF)-α, transforming growth factor-ÎČ, high sensitivity C-Reactive protein, and fibrinogen, measured at baseline. At baseline, 642 subjects had history of AF, but only 44 had AF in ECG recording. During a mean follow-up of 3.7 years, 108 subjects developed new-onset AF. There was no significant association between inflammatory biomarkers and past history of AF. After adjustment for demographic characteristics, comorbid conditions, laboratory values, echocardiographic variables, and medication use, plasma IL-6 level was significantly associated with presence of AF at baseline (Odds ratio [OR], 1.61; 95% confidence interval [CI], 1.21 to 2.14; P = 0.001) and new-onset AF (OR, 1.25; 95% CI, 1.02 to 1.53; P = 0.03). To summarize, plasma IL-6 level is an independent and consistent predictor of AF in patients with CKD

    Association between Inflammation and Cardiac Geometry in Chronic Kidney Disease: Findings from the CRIC Study.

    Get PDF
    Background Left ventricular hypertrophy (LVH) and myocardial contractile dysfunction are independent predictors of mortality in patients with chronic kidney disease (CKD). The association between inflammatory biomarkers and cardiac geometry has not yet been studied in a large cohort of CKD patients with a wide range of kidney function. Methods Plasma levels of interleukin (IL)-1ÎČ, IL-1 receptor antagonist (IL-1RA), IL-6, tumor necrosis factor (TNF)-α, transforming growth factor (TGF)-ÎČ, high-sensitivity C-Reactive protein (hs-CRP), fibrinogen and serum albumin were measured in 3,939 Chronic Renal Insufficiency Cohort study participants. Echocardiography was performed according to the recommendations of the American Society of Echocardiography and interpreted at a centralized core laboratory. Results LVH, systolic dysfunction and diastolic dysfunction were present in 52.3%, 11.8% and 76.3% of the study subjects, respectively. In logistic regression analysis adjusted for age, sex, race/ethnicity, diabetic status, current smoking status, systolic blood pressure, urinary albumin- creatinine ratio and estimated glomerular filtration rate, hs-CRP (OR 1.26 [95% CI 1.16, 1.37], p Conclusion In patients with CKD, elevated plasma levels of hs-CRP and IL-6 are associated with LVH and systolic dysfunction

    Patterns in Problem-solving Performance in Undergraduate Organic Chemistry: The Good, the Bad, and the Rest?

    No full text
    As few large studies of student performance in organic chemistry appear in the chemical education literature, many instructors rely on conventional wisdom when interpreting the results of their assessments. Outside of a relatively few studies on specific topics (e.g. mental rotation, misconceptions) conducted with small groups of students, the learning ecosystem in organic chemistry is relatively unknown. This large study examined the patterns in student performance across standard categories of problems in organic chemistry (e.g. nomenclature, mechanisms, product prediction) through multiple lenses including online/traditional delivery, gender, and grouping by class rank. Factor analysis of questions revealed both predictable and unexpected associations among individual assessment questions as well as question categories. Hierarchical cluster analysis and factor analysis revealed several distinct subgroups of students. The results suggest the exploration of targeted remediation as a path to improving student learning in organic chemistry

    Gut Microbiota and Cardiovascular Uremic Toxicities

    Get PDF
    Cardiovascular disease (CVD) remains a major cause of high morbidity and mortality in patients with chronic kidney disease (CKD). Numerous CVD risk factors in CKD patients have been described, but these do not fully explain the high pervasiveness of CVD or increased mortality rates in CKD patients. In CKD the loss of urinary excretory function results in the retention of various substances referred to as “uremic retention solutes”. Many of these molecules have been found to exert toxicity on virtually all organ systems of the human body, leading to the clinical syndrome of uremia. In recent years, an increasing body of evidence has been accumulated that suggests that uremic toxins may contribute to an increased cardiovascular disease (CVD) burden associated with CKD. This review examined the evidence from several clinical and experimental studies showing an association between uremic toxins and CVD. Special emphasis is addressed on emerging data linking gut microbiota with the production of uremic toxins and the development of CKD and CVD. The biological toxicity of some uremic toxins on the myocardium and the vasculature and their possible contribution to cardiovascular injury in uremia are also discussed. Finally, various therapeutic interventions that have been applied to effectively reduce uremic toxins in patients with CKD, including dietary modifications, use of prebiotics and/or probiotics, an oral intestinal sorbent that adsorbs uremic toxins and precursors, and innovative dialysis therapies targeting the protein-bound uremic toxins are also highlighted. Future studies are needed to determine whether these novel therapies to reduce or remove uremic toxins will reduce CVD and related cardiovascular events in the long-term in patients with chronic renal failure
    corecore