4,025 research outputs found

    Stable Isotropic Cosmological Singularities in Quadratic Gravity

    Get PDF
    We show that, in quadratic lagrangian theories of gravity, isotropic cosmological singularities are stable to the presence of small scalar, vector and tensor inhomogeneities. Unlike in general relativity, a particular exact isotropic solution is shown to be the stable attractor on approach to the initial cosmological singularity. This solution is also known to act as an attractor in Bianchi universes of types I, II and IX, and the results of this paper reinforce the hypothesis that small inhomogeneous and anisotropic perturbations of this attractor form part of the general cosmological solution to the field equations of quadratic gravity. Implications for the existence of a 'gravitational entropy' are also discussed.Comment: 18 pages, no figure

    Cosmologies with Energy Exchange

    Get PDF
    We provide a simple mathematical description of the exchange of energy between two fluids in an expanding Friedmann universe with zero spatial curvature. The evolution can be reduced to a single non-linear differential equation which we solve in physically relevant cases and provide an analysis of all the possible evolutions. Particular power-law solutions exist for the expansion scale factor and are attractors at late times under particular conditions. We show how a number of problems studied in the literature, such as cosmological vacuum energy decay, particle annihilation, and the evolution of a population of evaporating black holes, correspond to simple particular cases of our model. In all cases we can determine the effects of the energy transfer on the expansion scale factor. We also consider the situation in the presence of anti-decaying fluids and so called phantom fluids which violate the dominant energy conditions.Comment: 12 pages, 1 figur

    Cosmological Bounds on Spatial Variations of Physical Constants

    Full text link
    We derive strong observational limits on any possible large-scale spatial variation in the values of physical 'constants' whose space-time evolution is driven by a scalar field. The limits are imposed by the isotropy of the microwave background on large angular scales in theories which describe space and time variations in the fine structure constant, the electron-proton mass ratio, and the Newtonian gravitational constant, G. Large-scale spatial fluctuations in the fine structure constant are bounded by 2x10^-9 and 1.2x10^-8 in the BSBM and VSL theories respectively, fluctuations in the electron-proton mass ratio by 9x10^-5 in the BM theory and fluctuations in G by 3.6x10^-10 in Brans-Dicke theory. These derived bounds are significantly stronger than any obtainable by direct observations of astrophysical objects at the present time.Comment: 13 pages, 1 table, typos corrected, refs added. Published versio

    The Power of General Relativity

    Get PDF
    We study the cosmological and weak-field properties of theories of gravity derived by extending general relativity by means of a Lagrangian proportional to R1+δR^{1+\delta}. This scale-free extension reduces to general relativity when δ→0\delta \to 0. In order to constrain generalisations of general relativity of this power class we analyse the behaviour of the perfect-fluid Friedmann universes and isolate the physically relevant models of zero curvature. A stable matter-dominated period of evolution requires δ>0\delta >0 or δ<−1/4\delta <-1/4. The stable attractors of the evolution are found. By considering the synthesis of light elements (helium-4, deuterium and lithium-7) we obtain the bound −0.017<δ<0.0012.-0.017<\delta <0.0012. We evaluate the effect on the power spectrum of clustering via the shift in the epoch of matter-radiation equality. The horizon size at matter--radiation equality will be shifted by ∼1\sim 1% for a value of δ∼0.0005.\delta \sim 0.0005. We study the stable extensions of the Schwarzschild solution in these theories and calculate the timelike and null geodesics. No significant bounds arise from null geodesic effects but the perihelion precession observations lead to the strong bound δ=2.7±4.5×10−19\delta =2.7\pm 4.5\times 10^{-19} assuming that Mercury follows a timelike geodesic. The combination of these observational constraints leads to the overall bound 0≤δ<7.2×10−190\leq \delta <7.2\times 10^{-19} on theories of this type.Comment: 26 pages and 5 figures. Published versio

    Cosmological Co-evolution of Yang-Mills Fields and Perfect Fluids

    Full text link
    We study the co-evolution of Yang-Mills fields and perfect fluids in Bianchi type I universes. We investigate numerically the evolution of the universe and the Yang-Mills fields during the radiation and dust eras of a universe that is almost isotropic. The Yang-Mills field undergoes small amplitude chaotic oscillations, which are also displayed by the expansion scale factors of the universe. The results of the numerical simulations are interpreted analytically and compared with past studies of the cosmological evolution of magnetic fields in radiation and dust universes. We find that, whereas magnetic universes are strongly constrained by the microwave background anisotropy, Yang-Mills universes are principally constrained by primordial nucleosynthesis and the bound is comparatively weak, and Omega_YM < 0.105 Omega_rad.Comment: 13 pages, 5 figures, submitted to PR

    Anisotropically Inflating Universes

    Full text link
    We show that in theories of gravity that add quadratic curvature invariants to the Einstein-Hilbert action there exist expanding vacuum cosmologies with positive cosmological constant which do not approach the de Sitter universe. Exact solutions are found which inflate anisotropically. This behaviour is driven by the Ricci curvature invariant and has no counterpart in the general relativistic limit. These examples show that the cosmic no-hair theorem does not hold in these higher-order extensions of general relativity and raises new questions about the ubiquity of inflation in the very early universe and the thermodynamics of gravitational fields.Comment: 5 pages, further discussion and references adde

    What Comes After the Critique of the Corporate University? Toward a Syndicalist University

    Get PDF
    For the past three decades, university faculty have produced a cascade of contemporary protest literature that routinely criticizes the knowledge factory, academic capitalism, managed professionals, college for sale, the university in ruins, the corporate corruption of higher education, and University, Inc. University faculty are regularly warned about the fall of the faculty, the last professors, and the last intellectuals. This article reviews the historical development of the corporate and neoliberal university, but it takes the next step of asking what is to be done after the critique of the corporate university. It calls on faculty to engage in a variety of direct actions that circumvent established faculty institutions and proposes a new type of syndicalist university that is owned and managed by faculty. The legitimating principle of this revolution in university control is a principle that has long been accepted in classical liberal, Marxist, and anarcho-syndicalist theory – the right of first generation and the labor theory of value

    Alien Registration- Barrow, Samuel W. (Houlton, Aroostook County)

    Get PDF
    https://digitalmaine.com/alien_docs/35934/thumbnail.jp

    Social Investment in Massachusetts Public Higher Education: A Comparative Analysis

    Get PDF
    State expenditures on public higher education are increasingly viewed as a social investment that is necessary to sustain economic growth in a postindustrial economy. However, an analysis of comparative data indicates that state support for such education was below national averages during the 1980s and, when compared to its major competitor states, Massachusetts ranks poorly in support for these institutions. This article concludes that unless state support is increased over the next decade, Massachusetts will risk losing its competitive economic position, while educational administrators will be forced to choose between access or quality in public higher education

    Anisotropic Pressures at Ultra-stiff Singularities and the Stability of Cyclic Universes

    Full text link
    We show that the inclusion of simple anisotropic pressures stops the isotropic Friedmann universe being a stable attractor as an initial or final singularity is approached when pressures can exceed the energy density. This shows that the situation with isotropic pressures, studied earlier in the context of cyclic and ekpyrotic cosmologies, is not generic, and Kasner-like behaviour occurs when simple pressure anisotropies are present. We find all the asymptotic behaviours and determine the dynamics when the anisotropic principal pressures are proportional to the density. We expect distortions and anisotropies to be significantly amplified through a simple cosmological bounce in cyclic or ekpyrotic cosmologies when ultra-stiff pressures are present.Comment: 18 pages, 2 figure
    • …
    corecore