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Abstract

We provide a simple mathematical description of the exchange of en-

ergy between two fluids in an expanding Friedmann universe with zero

spatial curvature. The evolution can be reduced to a single non-linear dif-

ferential equation which we solve in physically relevant cases and provide

an analysis of all the possible evolutions. Particular power-law solutions

exist for the expansion scale factor and are attractors at late times un-

der particular conditions. We show how a number of problems studied

in the literature, such as cosmological vacuum energy decay, particle an-

nihilation, and the evolution of a population of evaporating black holes,

correspond to simple particular cases of our model. In all cases we can

determine the effects of the energy transfer on the expansion scale factor.

We also consider the situation in the presence of ‘anti-decaying’ fluids and

so called ‘phantom’ fluids which violate the dominant energy conditions.

1 Introduction

There are many cosmological situations where the transfer of energy between
two fluids is important. The interaction between matter and radiation [1], the
decay of massive particles into radiation [2], matter creation [3], the forma-
tion and evaporation of primordial black holes [4], the annihilations of particle-
antiparticle pairs [5], particle or string production [6, 7], inflaton decay [8] and
the decay of some scalar field [9] or vacuum energy [10], are all particular ex-
amples which have been studied in general-relativistic cosmology. The situation
in Brans-Dicke cosmology has also been investigated [11], as have the cases of
two arbitrary interacting fluids [12] and more than two interacting fluids [13].
In some cases, as in the example of accreting and evaporating black holes, there
will be a two-way transfer of energy occurring as, say, a spectrum of radiation
inhomogeneities collapse under their self-gravity in the early universe to form
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a population of primordial black holes but the products of the Hawking evap-
oration of the black holes adds to the cosmological population of interacting
relativistic particles [4]. The different studies of these particular situations have
often identified the existence of special power-law scaling solutions. In this pa-
per we consider a general problem of this sort, describe its general behaviour,
relate it to the existence of special power-law solutions, and describe its general
solution succinctly in terms of the parameters defining the energy exchanges.
The examples in the literature can then be shown to be particular examples of
these solutions and the conditions for their stability are made clear.

We will consider the mutual exchange of energy between two fluids at rates
that are proportional to a linear combination of their individual densities and
the expansion rate of the universe. In the absence of any interaction the fluids
reduce to two separate perfect fluids.

2 Decaying Fluids

Consider a flat Friedmann Robertson Walker (FRW) universe with expansion
scale factor a(t) containing two fluids with equations of state

p = (γ − 1)ρ,

p1 = (Γ − 1)ρ1,

where the γ and Γ are constants, and the evolution of the Hubble parameter
H = ȧ/a is governed by the Friedmann equation

3H2 = ρ+ ρ1, (1)

where 8πG ≡ 1. Assume that the two fluids exchange energy but the total
energy is conserved so that

ρ̇1 + 3HΓρ1 = −βHρ1 + αρH, (2)

ρ̇+ 3Hγρ = βHρ1 − αρH, (3)

where α and β are constants parametrising the energy exchanges between the
two fluids. Generalisations of this simple cosmology to spatially curved or
anisotropic universes can be made in an obvious way if required [7, 14]. In
an expanding universe (H > 0) this scenario corresponds to ρ and ρ1 ‘decaying’
into each other in proportion to their energy densities if α and β are positive.
The degenerate case γ = Γ can be seen to be trivially equivalent to the standard
scenario without energy exchange, by considering the fluid ρ2 = ρ+ ρ1.

Using the last three equations we can eliminate the densities to obtain a
single master equation for the Hubble expansion, H(t) :

Ḧ +HḢ(α+ β + 3γ + 3Γ) +
3

2
H3(αΓ + βγ + 3Γγ) = 0. (4)

Let us rewrite eq. (4) as

Ḧ +AHḢ +BH3 = 0 (5)
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with

A ≡ α+ β + 3γ + 3Γ,

B ≡ 3

2
(αΓ + βγ + 3Γγ).

This equation is a special case of the more general differential equation1 consid-
ered by Chimento [15]. In [15] Chimento investigates the mathematical structure
of this equation by showing that it has a form invariance, which is subsequently
used to find solutions.

Simple self-similar solutions to eq. (5) exist with

H =
h

t
(6)

where, for h 6= 0,
2 −Ah+Bh2 = 0,

and there are two non-trivial solutions, H+(t) and H−(t), with h values

h± =
A±

√
A2 − 8B

2B
. (7)

These real power-law solutions for H(t) exist iff A2 > 8B. For α, β, γ,Γ > 0
and γ 6= Γ, this inequality is always satisfied. We can see this by defining

δ ≡ B

A2
=

3(αΓ + βγ + 3Γγ)

2(α+ β + 3γ + 3Γ)2
, (8)

so that A2 > 8B iff δ 6 1/8. We see that the denominator in equation (8)
is always positive, so δ is always non-singular and positive for finite and semi-
definite positive values of α, β, γ and Γ. It can also be seen that δ → 0 as either
α or β → ∞. The maximum value of δ must therefore occur at finite values of
α and β. If this maximum exists when α and β are both non-zero then there
must exist a point at which

∂δ

∂α
=
∂δ

∂β
= 0.

Using (8) we can see that this condition is never met, so the maximum value of
δ must exist when α = 0, when β = 0, or when α = β = 0. For α = 0 we will
have a maximum at non-zero β when

(

∂δ

∂β

)

α=0

= 0 and

(

∂2δ

∂β2

)

α=0

6= 0,

which occurs iff β = 3(γ − Γ), for α, β, γ, Γ > 0 and γ 6= Γ. Similarly, the
maximum can occur at non-zero α when β = 0 iff α = 3(Γ−γ). We can choose,

1ÿ +αfẏ +β
∫

fdy + γf = 0, where y = y(x), f = f(y) and overdots denote differentiation
with respect to x. α, β and γ are constants.
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without loss of generality, Γ > γ so that the maximum value of δ occurs when
α = 3(Γ − γ) and β = 0, and we have the conclusion that

δ 6 δmax =
1

8

for all γ, Γ > 0 and γ 6= Γ.
Having established the existence of the power-law solutions (7), we can now

show that they behave as attractors of the general solution by solving (4). For
A2 > 8B we find the solution

H2 = a−A/2(c1a
√

A2−8B/2 + c2a
−
√

A2−8B/2), (9)

where c1 and c2 are constants. This solution to (5) was previously found by
Chimento in [15]. As a→ ∞, we then have

H2 → a−(A−
√

A2−8B)/2

and, as a→ 0,

H2 → a−(A+
√

A2−8B)/2.

These two equations can be integrated to obtain

a± ∝ t(A±
√

A2−8B)/2B, (10)

which are the power-law solutions (7), found earlier in eq. (6). By integrating
(9) we can show explicitly the existence of the above power-law attractors, and
the smooth evolution of a between them. It is possible to integrate (9) to get
a solution in terms of t and the hypergeometric function 2F1(ã, b̃; c̃;x). An
expression in terms of more transparent functions can be found by defining a
new time coordinate dτ ≡ a−(A+

√
A2−8B)/4dt and integrating in terms of τ .

This gives the solution

a ∝ e
√

c2(τ−τ0)(1 − e
√

c2

√
(A2−8B)(τ−τ0))−2/

√
(A2−8B). (11)

This is the same form for the evolution of a that was found by Chimento and
Lazkoz in their investigation of phantom fluids in k-essence [16]. It can be seen

from this expression that a → 0 as a ∼ e
√

c2

√
(A2−8B)(τ−τ0) when τ → −∞.

In terms of the coordinate t, this corresponds to the solution a− above. As

a → ∞, the solution smoothly approaches a ∼ (τ − τ0)
−2/

√
A2−8B as τ → τ0,

which corresponds to the solution a+.
We have now shown that the two power-law solutions (10) exist and for all

α, β, γ,Γ > 0 and are the attractors of the smoothly evolving general solution
at late and early times when A2 > 8B.

It remains to investigate the limiting case A2 = 8B. The exact solution to
equation (4) when A2 = 8B is [15]

H2 = a−A/2(c3 + c4 ln a), (12)
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where c3 and c4 are constants. For c4 = 0 this solution corresponds to power-
law expansion described by the degenerate case where a+ ≡ a−. For c4 6= 0 this
solution is more complicated and is bounded by a = e−c3/c4 whilst approaching
H2 ∼ a−A/2 ln a as a→ 0 or ∞, which does not describe a power-law behaviour.

An illustrative special exact solution to equation (4) exists when B = A2/9,
as was shown by Chimento [15]. In this case (4) can be linearised to

...
ψ = 0 by

the substitution H = (3/A)ψ̇/ψ. Hence, for this special value of B

H =
3(c5 + 2c6t)

A(1 + c5t+ c6t2)
, (13)

where c5, c6 are constants of integration. This expression can be integrated to

(

a

a0

)
A

3

= 1 + c5t+ c6t
2, (14)

where a0 is a constant and the early and late time behaviour is clear and has
the same form as the power-law solutions (7) when B = A2/9.

3 Evolution of the energy densities

The conservation equations (2) and (3) can be used to construct the second-
order differential equation

ρ′′

ρ
+A

ρ′

ρ
+ 2B = 0 (15)

where A and B are defined as before and primes denote differentiation with
respect to the variable η = ln a. This equation can be solved for ρ and the
corresponding solution for ρ1 can then be found from (3). Substituting these
solutions into the Friedmann equation (1) gives, for A2 > B, the solution (9)
that was previously found by solving the master equation (5).

The advantage of considering the evolution of ρ directly is that a particularly
interesting behaviour can be observed in the evolution of the ratio ρ/ρ1 for the
self-similar solutions (6). To find this behaviour we first note that a solution to
equation (15) is given by

ρ = ρ0a
N

where ρ0 is a constant and 2N = −A ±
√
A2 − 8B. Substituting this into

equation (3) gives the corresponding solution for ρ1

ρ1 = ρ10a
N

where ρ10 = (N + 3γ + α)ρ0/β is constant. These solutions for ρ and ρ1,
when substituted into the Friedmann equation (1), correspond to the self-similar
solutions for H given by (6). It is immediately apparent that ρ and ρ1 evolve
at the same rate and so the ratio ρ/ρ1 is a constant quantity

ρ

ρ1
=

β

(N + 3γ + α)
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during a period described by the power-law evolution (10). It is this constant
ratio in the energy density of two fluids with different barotropic indices γ and
Γ that has been used by a number of authors in an attempt to alleviate the
coincidence problem concerning the the present-day values of the vacuum and
matter energy-densities [9, 10].

4 Three Examples

The exact solutions found in the last sections provide us with extensions of the
analysis of several cosmological problems that have been studied in the past,
which can be defined by particular choices of the two parameters A and B. As
we have seen, the overall dynamical behaviour is determined by the behaviour
of the combination δ ≡ B/A2.

4.1 Particle-antiparticle annihilation

Consider the problem of the long-term evolution of a universe containing equal
numbers of electron-positron pairs [5]. If these particles are assumed to be the
lightest massive charged leptons then they cannot decay, and can only disappear
by means of the mutual annihilations e−e+ → 2γ. Page and McKee set up a
model for the e−e+ annihilation into radiation that corresponds to taking the
special case α = 0, β > 0,Γ = 1, γ = 4/3 in equations (2) and (3) and the
definition of βPM by Page and McKee is given in terms of our β by β ≡
3βPM/(2−βPM). They find the power-law solution with h = h− = 2/(β+3) =
(2 − βPM)/3 which reduces to the usual dust FRW model when β = βPM = 0
and there is no annihilation into radiation. The effect of the annihilations is to
push the expansion away from the dust-dominated form with a = t2/3 towards
the radiation dominated evolution with a = t1/2. The other power-law solution
corresponds to the pure radiation case with h = h+ = 1/2. We can verify that
this power-law solution is an attractor by evaluating δ, since for the e−e+ → 2γ
annihilation βPM = (13 −

√
105)/8 = 0.3441 so δ ≡ B/A2 = 0.1247 < 1/8.

4.2 Primordial black-hole evolution

A more complicated energy exchange problem was formulated by Barrow, Copeland
and Liddle [4] who consider the problem of a power-law mass spectrum of
primordial black holes forming in the early universe and then evolving un-
der the effects of Hawking evaporation of the part of the mass spectrum with
Hawking lifetimes less than the expansion age. This has two effects. The
radiation background is supplemented by input from the black-hole evapo-
ration products and the fall in the total black-hole density goes faster than
the adiabatic ρbh ∝ a−3 that occurs in the absence of decays because the
black hole population is a pressureless gas to a very good approximation, since
p/ρ ∼ v2 ∼ T/Mbh ∼ (mpl/Mbh)(tpl/t)

1/2 ≈ 0 for masses less than the Planck
mass mpl at times greater than the Planck time tpl. Accretion of background
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radiation in the radiation era of the universe by the black holes could be in-
cluded, but is negligible. This corresponds to our model in the special case
Γ = 1, γ = 4/3, α = 0 and

β =
3(n− 2)

8 − n
,

where the initial number density spectrum of black holes with masses between
m and m+ δm at time t is given by N(m, t) ∝ m−n and n > 2.

A power-law solution was found in ref. [5] with h = (8 − n)/9, so long as
2 < n < 7/2, and the black hole evaporations have a significant effect on the
expansion rate of the universe during the radiation era. We have

A =
2(25 − 2n)

8 − n
,

B =
36

8 − n
,

and so

δ ≡ B

A2
=

9(8 − n)

(25 − 2n)2
.

We see that the allowed range of n ∈ (2, 7/2) corresponds to δ ∈ (6/49, 1/8) and
the expansion scale factor evolves as a ∝ t(8−n)/9. The n = 2 limit corresponds
to a pure dust-dominated expansion, with a ∝ t2/3, while the n = 7/2 limit
corresponds to a pure radiation-dominated evolution, with a ∝ t1/2. Again we
see that the power-law solution is an attractor for the general solution with n
in this range. When the expansion of the universe becomes dominated by cold
dark matter, with ρcdm ∝ a−3, a power-law scaling solution no longer exists
because the radiation products from the black-hole evaporations now make a
negligible contribution to the total density of the universe, which is dominated
by ρcdm > ρbh >> ργ , and a ∝ t2/3 becomes the attractor for the evolution of
the expansion scale factor.

4.3 Vacuum decay

The cosmological evolution created by the decay of a vacuum stress (ρ1 = ρv)
into equilibrium radiation was considered by Freese et. al. and many other
authors [10]. It is described by a special case of our equations (2) and (3) with
Γ = 0, γ = 4/3, α = 0 and β > 0. It represents the decay of a scalar field stress
with p ≈ −ρ into radiation. In this case we have

A = β + 4,

B = 2β,

δ ≡ B

A2
=

2β

(β + 4)2
, (16)

with h+ = 1/2 and h− = 2/β. We see that the first of these corresponds to the
degenerate situation with pure radiation. The second solution has a ∝ t2/β and
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requires β > 3 if the evolution of the universe is to have a matter-dominated era
following a radiation era. As the value β increases, the dominance of the vacuum
contribution slows the expansion whereas in the limit β → 0 the expansion rate
increases without bound and the dynamics approach the usual vacuum-energy
dominated de Sitter expansion with a ∝ exp(t

√
ρv/3). Again we see that this

simple solution can be generalised by using the full analysis provided above. We
see from (16) that we always have δ 6 1/8 with the maximum of δ achieved
when β = 4. The solution (13) - (14) arises for δ = 1/9 which occurs when
β = 2 or β = 8.

5 Anti-Decaying Fluids

It was shown in section 2 that for α, β, γ, Γ > 0 and γ 6= Γ the maximum
value that δ can take is 1/8. If we relax these assumptions, then δ can take
values greater than 1/8 and the qualitative character of the solutions to (4) is
significantly altered. We will begin by investigating the conditions required for
δ > 1/8.

In the previous section it was shown that for α, β, γ, Γ > 0 and γ 6= Γ the
only point at which δ = 1/8 is at α = 3(Γ − γ) and β = 0, and at all other
points in this parameter range we have δ < 1/8. It can be seen from (8) that
δ = 1/8 when

α =
(

√

3(Γ − γ) ±
√

−β
)2

> 0

and that the first derivatives of δ are non-zero at any point where this condition
is satisfied. These values of α therefore separate regions where δ < 1/8 from
those where δ > 1/8. It can also be seen that δ > 1/8 only if α > 0 and
β < 0. These conditions correspond to the fluid ρ decaying and the fluid ρ1

anti-decaying. (By ‘anti-decaying’ we mean gaining energy in proportion to its
energy density, instead of losing it). An example of an anti-decaying fluid is a
ghost field which radiates away energy; here the energy density of the ghost is
negative, so a negative value of β is required for the radiation to carry away
energy.

For δ > 1/8 the exact solution to equation (9) is

H2 = a−A/2 cos

(

1

2

√

8B −A2 ln a

)

, (17)

where integration constants have been rescaled into a and H . Again, this equa-
tion is difficult to solve in term of the coordinate t. By introducing the new
coordinate dτ ≡ aA/4dt, we get

d ln a

dτ
= cos

(

1

2

√

8B −A2 ln a

)

,

which can be integrated to obtain a closed form for the expansion scale factor:

a(τ) = exp

{

4√
8B −A2

am

(√
8B −A2

4
(τ − τ0) 2

)}

, (18)
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Figure 1: The Jacobi amplitude am(τ |2)

where τ0 is constant and am(â|b̂) is the Jacobi amplitude, shown in figure 1.
The form of a(τ) in (18) is an always-positive oscillatory function of the time τ ,
with constant amplitude. The corresponding solution in terms of the coordinate
t will therefore also be oscillatory with constant amplitude.

Whilst in the previous section we found that, for δ < 1/8, the scale factor
evolves as a smooth function with early and late-time power-law behaviour, we
have found for δ > 1/8 a substantially different behaviour. The scale factor now
oscillates in time and does not display the simple power-law behaviour found in
the δ 6 1/8 situations.

6 Phantom Fluids

We have so far only discussed the cases where γ, Γ > 0 and γ 6= Γ. This
assumption is useful as it means that δ is non-singular in the parameter range
α, β > 0, for which it was shown in section 2 that the maximum value of δ is
1/8. This result was subsequently used in section 5 to show that there exists
a parameter range with α > 0 and β < 0 for which δ > 1/8. In this section
we will relax the positive semi-definite assumption on the parameters γ and
Γ, extending the analysis we have so far performed to the case of so called
‘phantom’ fluids. We begin by showing that in the parameter range α, β > 0
there exist no points at which δ → +∞. For this to occur we would require the
simultaneous satisfaction of the conditions

αΓ + βγ + 3Γγ > 0 and α+ β + 3γ + 3Γ = 0.
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Using the second of these conditions, we can eliminate α in the first to find

β(γ − Γ) − 3Γ2 > 0 or β < − 3Γ2

(Γ − γ)
6 0,

where we still assume Γ > γ, without loss of generality. Similarly, we can obtain
for α the expression

α >
3γ2

(Γ − γ)
> 0.

These two inequalities show that δ → +∞ can only occur in the parameter
space α > 0 and β < 0. Therefore, in the range α, β > 0 the only singularities
in δ that can occur are those in which δ → −∞. In this case we can again show,
using the arguments in section 2, that the maximum value of δ when α, β > 0
is 1/8. The argument showing the existence of a region where δ > 1/8 in the
range α > 0 and β < 0 now follows in exactly the same way as for the γ, Γ > 0
case, given in section 5.

The form of the solutions in the regions where δ < 1/8 and δ > 1/8 are the
same as in the non-phantom case, and are given by equations (9) and (17).

7 Discussion

We have determined the general solution of a simple model with the exchange
of energy between two fluids in an expanding Friedmann universe of zero spatial
curvature. The total energy of the exchange is conserved and the model allows
energy inputs and outflows proportional to the densities of the two fluids. A
number of simple examples of this sort already exist, such as particle decays or
particle-antiparticle annihilations into radiation, particle production, the evap-
oration of a population of primordial black holes, the decay of a cosmological
vacuum or cosmological ‘constant’, and energy exchanges between quintessence
and ordinary matter or radiation. However, these examples are restricted to
one-way energy exchange and do not prove that the scaling solutions that they
employ are attractors for the general solution. We have established the exis-
tence and form of simple power-law solutions for the expansion scale factor in
the case of two-way energy exchange between fluids and determined that they
are attractors for the late-time evolution in situations that are usually regarded
as generic. If we allow one fluid to be anti-decaying then we can move into a
domain where these power-law solutions are no longer attractors. Again, we find
the general behaviour for these cosmologies. These solutions provide a simple
model for the study of a wide range of energy exchange problems in cosmology
and also reveal the conditions under which power-law solutions previously used
to solve some of these problems are stable attractors. They provide a simple
model for many future studies of a variety of interacting fluid cosmologies.
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