98 research outputs found

    Dynamics of Logamediate and Intermediate Scenarios in the Dark Energy Filled Universe

    Full text link
    We have considered a model of two component mixture i.e., mixture of Chaplygin gas and barotropic fluid with tachyonic field. In the case, when they have no interaction then both of them retain their own properties. Let us consider an energy flow between barotropic and tachyonic fluids. In both the cases we find the exact solutions for the tachyonic field and the tachyonic potential and show that the tachyonic potential follows the asymptotic behavior. We have considered an interaction between these two fluids by introducing a coupling term. Finally, we have considered a model of three component mixture i.e., mixture of tachyonic field, Chaplygin gas and barotropic fluid with or without interaction. The coupling functions decays with time indicating a strong energy flow at the initial period and weak stable interaction at later stage. To keep the observational support of recent acceleration we have considered two particular forms (i) Logamediate Scenario and (ii) Intermediate Scenario, of evolution of the Universe. We have examined the natures of the recent developed statefinder parameters and slow-roll parameters in both scenarios with and without interactions in whole evolution of the universe.Comment: 28 pages, 20 figure

    Observable Effects of Scalar Fields and Varying Constants

    Get PDF
    We show by using the method of matched asymptotic expansions that a sufficient condition can be derived which determines when a local experiment will detect the cosmological variation of a scalar field which is driving the spacetime variation of a supposed constant of Nature. We extend our earlier analyses of this problem by including the possibility that the local region is undergoing collapse inside a virialised structure, like a galaxy or galaxy cluster. We show by direct calculation that the sufficient condition is met to high precision in our own local region and we can therefore legitimately use local observations to place constraints upon the variation of "constants" of Nature on cosmological scales.Comment: Invited Festscrift Articl

    Strings in Homogeneous Background Spacetimes

    Full text link
    The string equations of motion for some homogeneous (Kantowski-Sachs, Bianchi I and Bianchi IX) background spacetimes are given, and solved explicitly in some simple cases. This is motivated by the recent developments in string cosmology, where it has been shown that, under certain circumstances, such spacetimes appear as string-vacua. Both tensile and null strings are considered. Generally, it is much simpler to solve for the null strings since then we deal with the null geodesic equations of General Relativity plus some additional constraints. We consider in detail an ansatz corresponding to circular strings, and we discuss the possibility of using an elliptic-shape string ansatz in the case of homogeneous (but anisotropic) backgrounds.Comment: 25 pages, REVTE

    Conditions for Successful Extended Inflation

    Full text link
    We investigate, in a model-independent way, the conditions required to obtain a satisfactory model of extended inflation in which inflation is brought to an end by a first-order phase transition. The constraints are that the correct present strength of the gravitational coupling is obtained, that the present theory of gravity is satisfactorily close to general relativity, that the perturbation spectra from inflation are compatible with large scale structure observations and that the bubble spectrum produced at the phase transition doesn't conflict with the observed level of microwave background anisotropies. We demonstrate that these constraints can be summarized in terms of the behaviour in the conformally related Einstein frame, and can be compactly illustrated graphically. We confirm the failure of existing models including the original extended inflation model, and construct models, albeit rather contrived ones, which satisfy all existing constraints.Comment: 8 pages RevTeX file with one figure incorporated (uses RevTeX and epsf). Also available by e-mailing ARL, or by WWW at http://star-www.maps.susx.ac.uk/papers/infcos_papers.html; Revised to include extra references, results unchanged, to appear Phys Rev

    On the resolution of cosmic coincidence problem and phantom crossing with triple interacting fluids

    Full text link
    We here investigate a cosmological model in which three fluids interact with each other involving certain coupling parameters and energy exchange rates. The motivation of the problem stems from the puzzling `triple coincidence problem' which naively asks why the cosmic energy densities of matter, radiation and dark energy are almost of the same order of magnitude at the present time. In our model, we determine the conditions under triple interacting fluids will cross the phantom divide.Comment: 22 pages, 6 figures, to appear in Eur. Phys. J. C (2009

    S-duality Invariant Perturbations in String Cosmology

    Get PDF
    We investigate the generation of curvature and isocurvature (dilaton, moduli and axion) perturbations in a general class of axion-dilaton-moduli models,including the pre-big bang scenario. Allowing for an arbitrary coupling constant between the dilaton field and the axion field, we exploit the SL(2,R) symmetry of the theory to obtain the spectral indices of the field perturbations in a pre-big bang type scenario. Axion field fluctuations about a homogeneous background field can yield a scale-invariant (Harrison-Zel'dovich) spectrum. As an example we present a string-motivated case with SL(2,R)xSL(2,R) symmetry, where a second axion field arises from the compactification of the ten-dimensional theory to four dimensions.Comment: 15 pages, no figures, plain LaTe

    Chiral fermion mass and dispersion relations at finite temperature in the presence of hypermagnetic fields

    Full text link
    We study the modifications to the real part of the thermal self-energy for chiral fermions in the presence of a constant external hypermagnetic field. We compute the dispersion relation for fermions occupying a given Landau level to first order in g'^2, g^2 and g_phi^2 and to all orders in g'B, where g' and g are the U(1)_Y and SU(2)_L couplings of the standard model, respectively, g_phi is the fermion Yukawa coupling, and B is the hypermagnetic field strength. We show that in the limit where the temperature is large compared to sqrt{g'B}, left- and right-handed modes acquire finite and different B-dependent masses due to the chiral nature of their coupling with the external field. Given the current bounds on the strength of primordial magnetic fields, we argue that the above is the relevant scenario to study the effects of magnetic fields on the propagation of fermions prior and during the electroweak phase transition.Comment: 11 pages 4 figures, published versio

    Parameterization and Reconstruction of Quasi Static Universe

    Full text link
    We study a possibility of the fate of universe, in which there is neither the rip singularity, which results in the disintegration of bound systems, nor the endless expansion, instead the universe will be quasi static. We discuss the parameterization of the corresponding evolution and the reconstruction of the scalar field model. We find, with the parameterization consistent with the current observation, that the current universe might arrive at a quasi static phase after less than 20Gyr.Comment: minor changes and Refs. added, publish in EPJ
    • 

    corecore