24 research outputs found

    Acceptability of OP/Na swabbing for SARS-CoV-2: a prospective observational cohort surveillance study in Western Australian schools

    Get PDF
    Objectives: When the COVID-19 pandemic was declared, Governments responded with lockdown and isolation measures to combat viral spread, including the closure of many schools. More than a year later, widespread screening for SARS-CoV-2 is critical to allow schools and other institutions to remain open. Here, we describe the acceptability of a minimally invasive COVID-19 screening protocol trialled by the Western Australian Government to mitigate the risks of and boost public confidence in schools remaining open. To minimise discomfort, and optimise recruitment and tolerability in unaccompanied children, a combined throat and nasal (OP/Na) swab was chosen over the nasopharyngeal swab commonly used, despite slightly reduced test performance. Design, setting and participants: Trialling of OP/Na swabbing took place as part of a prospective observational cohort surveillance study in 79 schools across Western Australia. Swabs were collected from 5903 asymptomatic students and 1036 asymptomatic staff in 40 schools monthly between June and September 2020. Outcome measures: PCR testing was performed with a two-step diagnostic and independent confirmatory PCR for any diagnostic PCR positives. Concurrent surveys, collected online through the REDCap platform, evaluated participant experiences of in-school swabbing. Results: 13 988 swabs were collected from students and staff. There were zero positive test results for SARS-CoV-2, including no false positives. Participants reported high acceptability: 71% of students reported no or minimal discomfort and most were willing to be reswabbed (4% refusal rate). Conclusions: OP/Na swabbing is acceptable and repeatable in schoolchildren as young as 4 years old and may combat noncompliance rates by significantly increasing the acceptability of testing. This kind of minimally-invasive testing will be key to the success of ongoing, voluntary mass screening as society adjusts to a new ‘normal’ in the face of COVID-19. Trial registration number: Australian New Zealand Clinical Trials Registry—ACTRN12620000922976

    DETECT schools study protocol: A prospective observational cohort surveillance study investigating the impact of COVID-19 in Western Australian schools

    Get PDF
    Introduction: Amidst the evolving COVID-19 pandemic, understanding the transmission dynamics of the SARS-CoV-2 virus is key to providing peace of mind for the community and informing policy-making decisions. While available data suggest that school-aged children are not significant spreaders of SARS-CoV-2, the possibility of transmission in schools remains an ongoing concern, especially among an aging teaching workforce. Even in low-prevalence settings, communities must balance the potential risk of transmission with the need for students\u27 ongoing education. Through the roll out of high-throughput school-based SARS-CoV-2 testing, enhanced follow-up for individuals exposed to COVID-19 and wellbeing surveys, this study investigates the dynamics of SARS-CoV-2 transmission and the current psychosocial wellbeing impacts of the pandemic in school communities. Methods: The DETECT Schools Study is a prospective observational cohort surveillance study in 79 schools across Western Australia (WA), Australia. To investigate the incidence, transmission and impact of SARS-CoV-2 in schools, the study comprises three “modules”: Module 1) Spot-testing in schools to screen for asymptomatic SARS-CoV-2; Module 2) Enhanced surveillance of close contacts following the identification of any COVID-19 case to determine the secondary attack rate of SARS-CoV-2 in a school setting; and Module 3) Survey monitoring of school staff, students and their parents to assess psycho-social wellbeing following the first wave of the COVID-19 pandemic in WA. Clinical Trial Registration: Trial registration number: ACTRN1262000092297

    Altered galectin-1 serum levels in patients diagnosed with high-grade glioma.

    No full text
    High-grade gliomas (HGG) are the most common and most aggressive intrinsic human brain tumors in adults. Galectin-1, a glycan-binding protein that is overexpressed in HGG, has been shown to contribute significantly to the aggressive nature of HGG. It is unknown whether increased galectin-1 expression levels are exclusively found at the tumor site or whether galectin-1 can also be detected in the serum of HGG patients. Galectin-1 serum levels were analyzed in a prospective dataset of 43 healthy controls and 125 patients with newly diagnosed or recurrent HGG. Samples were taken at the moment of surgical resection and/or 2-3 weeks after surgery. Galectin-1 serum levels were determined using an ELISA for galectin-1. Galectin-1 serum levels depended significantly on age and sex in the control group. Age- and sex-adjusted galectin-1 serum levels were significantly higher in all patient subgroups compared to healthy controls with a high discriminative ability that increased with age. We did not observe a significant decrease in the galectin-1 serum levels upon surgical resection of the tumor. Collectively, the data presented here may represent a first step to establish galectin-1 as a biomarker in HGG disease monitoring. Further longitudinal evaluation is required and ongoing to investigate the value of galectin-1 serum levels in HGG patients as an additional diagnostic marker, but more importantly as a predictor of treatment response and prognosis. Furthermore, galectin-1 serum levels could also provide an important tool for the identification of HGG patients that could benefit from galectin-1 directed therapies that are currently under development.Journal ArticleResearch Support, Non-U.S. Gov'tSCOPUS: ar.jinfo:eu-repo/semantics/publishe

    The Biology of Vasopressin

    Get PDF
    Vasopressins are evolutionarily conserved peptide hormones. Mammalian vasopressin functions systemically as an antidiuretic and regulator of blood and cardiac flow essential for adapting to terrestrial environments. Moreover, vasopressin acts centrally as a neurohormone involved in social and parental behavior and stress response. Vasopressin synthesis in several cell types, storage in intracellular vesicles, and release in response to physiological stimuli are highly regulated and mediated by three distinct G protein coupled receptors. Other receptors may bind or cross-bind vasopressin. Vasopressin is regulated spatially and temporally through transcriptional and post-transcriptional mechanisms, sex, tissue, and cell-specific receptor expression. Anomalies of vasopressin signaling have been observed in polycystic kidney disease, chronic heart failure, and neuropsychiatric conditions. Growing knowledge of the central biological roles of vasopressin has enabled pharmacological advances to treat these conditions by targeting defective systemic or central pathways utilizing specific agonists and antagonists
    corecore